Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the stream of consciousness

26.07.2005


Scientists at University College London (UCL) have developed a method of tracking someone’s stream of consciousness based on their brain activity alone. In a study published in the latest issue of Current Biology, the UCL team found that brain activity measured in volunteers who were viewing a visual illusion could be used to accurately track their subjective experience while it underwent many spontaneous changes



In the study, funded by the Wellcome Trust, John-Dylan Haynes and Geraint Rees presented volunteers with a visual illusion known as “binocular rivalry”. When very different images are presented separately to each eye, they compete for access to consciousness. Volunteers experience many spontaneous switches in their awareness, sometimes seeing one image and sometimes the other.

While volunteers experienced these spontaneous switches in awareness, the UCL team measured patterns of activity in their brains using functional MRI (fMRI) brain scanning. They found that brain activity could be used to blindly predict with high precision which of the two images a volunteer was perceiving, and how their conscious perception changed over several minutes of viewing. The study thus shows that it is possible to predict the changing stream of consciousness from brain activity alone.


Dr John-Dylan Haynes of the UCL Institute of Neurology says: “Previous research on visual perception has tended to focus on perception of static, unchanging scenes, ignoring the fact that our stream of consciousness is highly dynamic and our perception changes from second to second.

“Our study represents an important but very early stage step towards eventually building a machine that can track a person’s consciousness on a second-by-second basis. These findings could be used to help develop or improve devices that help paralyzed people, such as those with locked-in syndrome, communicate through measurements of their brain activity. But we are still a long way off from developing a universal mind-reading machine.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>