Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia completes depleted uranium study

22.07.2005


Sandia National Laboratories has completed a two-year study of the potential health effects associated with accidental exposure to depleted uranium (DU) during the 1991 Gulf War.



The study, "An Analysis of Uranium Dispersal and Health Effects Using a Gulf War Case Study," performed by Sandia scientist Al Marshall, employs analytical capabilities used by Sandia’s National Security Studies Department and examines health risks associated with uranium handling.

U.S. and British forces used DU in armor-piercing penetrator bullets to disable enemy tanks during the Gulf and Balkan wars. DU is a byproduct of the process used to enrich uranium for use in nuclear reactors and nuclear weapons. During the enrichment process, the fraction of one type of uranium (uranium-235) is increased relative to the fraction found in natural uranium. As a consequence, the uranium left over after the enrichment process (mostly uranium-238) is depleted in uranium-235 and is called depleted uranium.


The high density, low cost, and other properties of DU make it an attractive choice as an anti-tank weapon. However, on impact, DU particulate is dispersed in the surrounding air both within and outside the targeted vehicle and suspended particulate may be inhaled or ingested. Concerns have been raised that exposure to uranium particulate could have serious health problems including leukemia, cancers, and neurocognitive effects, as well as birth defects in the progeny of exposed veterans and civilians.

Marshall’s study concluded that the reports of serious health risks from DU exposure are not supported by veteran medical statistics nor supported by his analysis. Only a few U.S. veterans in vehicles accidentally struck by DU munitions are predicted to have inhaled sufficient quantities of DU particulate to incur any significant health risk. For these individuals, DU-related risks include the possibility of temporary kidney damage and about a 1 percent chance of fatal cancer.

Several earlier studies were carried out by the U.S. Department of Defense, by University Professors Fetter (University of Maryland) and von Hippel (Princeton), and by an Army sponsored team from Pacific Northwest National Laboratories and Los Alamos National Laboratory.

The conclusions from the Sandia study are consistent with these earlier studies. The Sandia study, however, also includes an analysis of potential health effects of DU fragments embedded as shrapnel in the bodies of some U.S. veterans. The Sandia study also looked at civilian exposures in greater detail, examined the potential risk of DU-induced birth defects in the children of exposed individuals, and provided a more detailed analysis of the dispersion of DU following impact with a number of targeted vehicles.

Michael Padilla | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>