Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia completes depleted uranium study

22.07.2005


Sandia National Laboratories has completed a two-year study of the potential health effects associated with accidental exposure to depleted uranium (DU) during the 1991 Gulf War.



The study, "An Analysis of Uranium Dispersal and Health Effects Using a Gulf War Case Study," performed by Sandia scientist Al Marshall, employs analytical capabilities used by Sandia’s National Security Studies Department and examines health risks associated with uranium handling.

U.S. and British forces used DU in armor-piercing penetrator bullets to disable enemy tanks during the Gulf and Balkan wars. DU is a byproduct of the process used to enrich uranium for use in nuclear reactors and nuclear weapons. During the enrichment process, the fraction of one type of uranium (uranium-235) is increased relative to the fraction found in natural uranium. As a consequence, the uranium left over after the enrichment process (mostly uranium-238) is depleted in uranium-235 and is called depleted uranium.


The high density, low cost, and other properties of DU make it an attractive choice as an anti-tank weapon. However, on impact, DU particulate is dispersed in the surrounding air both within and outside the targeted vehicle and suspended particulate may be inhaled or ingested. Concerns have been raised that exposure to uranium particulate could have serious health problems including leukemia, cancers, and neurocognitive effects, as well as birth defects in the progeny of exposed veterans and civilians.

Marshall’s study concluded that the reports of serious health risks from DU exposure are not supported by veteran medical statistics nor supported by his analysis. Only a few U.S. veterans in vehicles accidentally struck by DU munitions are predicted to have inhaled sufficient quantities of DU particulate to incur any significant health risk. For these individuals, DU-related risks include the possibility of temporary kidney damage and about a 1 percent chance of fatal cancer.

Several earlier studies were carried out by the U.S. Department of Defense, by University Professors Fetter (University of Maryland) and von Hippel (Princeton), and by an Army sponsored team from Pacific Northwest National Laboratories and Los Alamos National Laboratory.

The conclusions from the Sandia study are consistent with these earlier studies. The Sandia study, however, also includes an analysis of potential health effects of DU fragments embedded as shrapnel in the bodies of some U.S. veterans. The Sandia study also looked at civilian exposures in greater detail, examined the potential risk of DU-induced birth defects in the children of exposed individuals, and provided a more detailed analysis of the dispersion of DU following impact with a number of targeted vehicles.

Michael Padilla | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>