Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery may help doctors treat infertility

21.07.2005


New research suggests that medications commonly referred to as fertility drugs may be ineffective for women who lack a gene called the estrogen receptor beta. The study showed that fertility drugs did not improve ovulation rates in mice that were genetically engineered to lack estrogen receptor beta. The estrogen receptor beta is one of two estrogen receptor proteins which mediate the effects of estrogen hormones and are present throughout the female reproductive tissues. These new data indicate that this receptor plays a critical role in ovulation, and suggests that women who do not have this receptor may benefit more from alternative infertility treatments. The findings are reported in Endocrinology, published in August 2005.



"What we found is that the beta estrogen receptor plays a role in moving the egg outside the ovary so it can be fertilized," said Kenneth Korach, Ph.D., Laboratory Chief at the National Institute of Environmental Health Sciences (NIEHS) where the research was conducted. "We never knew before what function this receptor played in reproduction."

If the results from this animal study are found to be applicable to humans, a simple blood test will be able to provide enough information to determine if a genetic mutation may be altering the function of the estrogen receptor beta. The results of this blood test, coupled with information from other medical tests and evaluations conducted by the physician, will help diagnose infertility and better determine treatment options.


"Dealing with infertility can be emotionally, financially, and physically draining" said Dr. David Schwartz, Director of the NIEHS, a part of the National Institutes of Health, which funded the research. "If we can help couples understand the reasons for their infertility, doctors can further define their treatment options, help them to minimize the expense and risk of taking drugs that may be less effective for them, and increase their chances of having a safe and healthy child," he added.

The NIEHS researchers treated normal female mice and female mice that lack estrogen receptor beta with fertility drugs similar to those commonly used by women undergoing fertility treatments. The mice lacking this receptor are more likely to exhibit infertility or subfertility, including producing fewer offspring, or having less frequent pregnancies. Treatment with fertility drugs did not improve ovulation rates in these studies.

Years of study have shown that the hormone estrogen plays an important role in a variety of systems, most especially female reproduction. However, it was generally thought that there was only one receptor, the alpha receptor, that responded to estrogen. It wasn’t until 1996 that the second receptor, estrogen receptor beta, was discovered. The current study provides evidence that the beta receptor plays a more significant role in ovarian function than the alpha receptor. Researchers would like to further their investigation into the role of the beta receptor by studying women already undergoing fertility treatment.

"The tools and animal models necessary to do these types of studies have only recently become available, but are already helping us to better understand the role of estrogen in the ovary," said John Couse, Ph.D., lead author of the August paper.

An earlier NIEHS study published in the June issue of Endocrinology, used a test tube or in vitro approach, to elucidate the role that estrogen receptors play in ovulation. "The combination of the two different methods, the in vivo and in vitro studies, complement each other nicely and provide more precise answers to the role that the estrogen receptor beta plays in ovulation," said lead author Judith Emmen, Ph.D.

The estrogen receptor beta is also known to respond to environmental and dietary chemicals that can mimic the effects of estrogen and stimulate the body’s natural hormones. One example is genistein, a common component of soy products. These new studies by Korach and colleagues suggest that such environmental exposures could interact with estrogen receptor beta and possibly alter ovarian function in women.

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>