Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benign breast disease an important breast cancer risk factor

21.07.2005


A study led by Mayo Clinic Cancer Center adds evidence to a growing body of knowledge that shows women with benign breast disease have a higher risk for breast cancer, and that certain types of breast disease may predict the near-term development of breast cancer. The findings will be published in the July 21 issue of The New England Journal of Medicine.



"Our findings indicate a link between select types of benign breast lesions and the later development of breast cancer," says Lynn Hartmann, M.D., Mayo Clinic oncologist and lead investigator of the study. "Women who have a breast biopsy that is benign must discuss the possibility of additional risks with their doctors."

Benign breast disease refers to any lumps or mammographically-detected abnormalities that have been biopsied and found to not contain cancerous cells. Each year in the United States it is estimated that more than 1 million women have a breast biopsy with benign findings, and Dr. Hartmann encourages clinicians to look more closely at the type of lesions they find. The Mayo team is evaluating various possible risk factors for a later breast cancer, including age at benign biopsy, family history of breast cancer and the pathologic findings of the benign lesion. "Our goal is to do a better job of risk prediction for women with various types of benign breast conditions," says Dr. Hartmann.


Dr. Hartmann and her co-investigators were heartened to find convincing evidence that women with the most common, non-proliferative forms of benign findings had no increased risk of developing breast cancer -- as long as they did not have a strong family history of breast cancer. However, for proliferative and atypical types, the opposite was true, and these lesions pointed to an increased risk of a future breast cancer, even when the family history of breast cancer was negative. Dr. Hartmann and her colleagues say continued studies of this kind are necessary to help understand the process of breast cancer development.

The study population of 9,087 women was drawn from the Mayo Clinic Surgical and Pathology Indices, identifying women ages 18 to 85, who had a biopsy of a benign breast lesion during a 25-year period from Jan. 1, 1967, through Dec. 31, 1991. Family histories were obtained at time of follow-up and from Mayo medical record questionnaires.

All benign breast samples were evaluated by a breast pathologist unaware of initial diagnoses or patient outcomes and assigned to one of three categories of benign breast lesions -- non-proliferative, proliferative and atypical. This information was used to link the risk of subsequent development of breast cancer to specific types of lesions.

In addition to Dr. Hartmann, members of the Mayo Clinic research team included Marlene Frost, Ph.D., Wilma Lingle, Ph.D., Amy Degnim, M.D., Karthik Ghosh, M.D., Robert Vierkant, Shaun Maloney, V. Shane Pankratz, Ph.D., David Hillman, Vera Suman, Ph.D., Jo Johnson, Celine Vachon, Ph.D., L. Joseph Melton III, M.D., and Daniel Visscher, M.D. They were joined by Thomas Sellers, Ph.D., H. Lee Moffitt Cancer Center and Research Institute, Tampa, Fla.; Cassann Blake, M.D., Wayne State University, Detroit; and Thea Tlsty, Ph.D., University of California, San Francisco.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>