Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benign breast disease an important breast cancer risk factor

21.07.2005


A study led by Mayo Clinic Cancer Center adds evidence to a growing body of knowledge that shows women with benign breast disease have a higher risk for breast cancer, and that certain types of breast disease may predict the near-term development of breast cancer. The findings will be published in the July 21 issue of The New England Journal of Medicine.



"Our findings indicate a link between select types of benign breast lesions and the later development of breast cancer," says Lynn Hartmann, M.D., Mayo Clinic oncologist and lead investigator of the study. "Women who have a breast biopsy that is benign must discuss the possibility of additional risks with their doctors."

Benign breast disease refers to any lumps or mammographically-detected abnormalities that have been biopsied and found to not contain cancerous cells. Each year in the United States it is estimated that more than 1 million women have a breast biopsy with benign findings, and Dr. Hartmann encourages clinicians to look more closely at the type of lesions they find. The Mayo team is evaluating various possible risk factors for a later breast cancer, including age at benign biopsy, family history of breast cancer and the pathologic findings of the benign lesion. "Our goal is to do a better job of risk prediction for women with various types of benign breast conditions," says Dr. Hartmann.


Dr. Hartmann and her co-investigators were heartened to find convincing evidence that women with the most common, non-proliferative forms of benign findings had no increased risk of developing breast cancer -- as long as they did not have a strong family history of breast cancer. However, for proliferative and atypical types, the opposite was true, and these lesions pointed to an increased risk of a future breast cancer, even when the family history of breast cancer was negative. Dr. Hartmann and her colleagues say continued studies of this kind are necessary to help understand the process of breast cancer development.

The study population of 9,087 women was drawn from the Mayo Clinic Surgical and Pathology Indices, identifying women ages 18 to 85, who had a biopsy of a benign breast lesion during a 25-year period from Jan. 1, 1967, through Dec. 31, 1991. Family histories were obtained at time of follow-up and from Mayo medical record questionnaires.

All benign breast samples were evaluated by a breast pathologist unaware of initial diagnoses or patient outcomes and assigned to one of three categories of benign breast lesions -- non-proliferative, proliferative and atypical. This information was used to link the risk of subsequent development of breast cancer to specific types of lesions.

In addition to Dr. Hartmann, members of the Mayo Clinic research team included Marlene Frost, Ph.D., Wilma Lingle, Ph.D., Amy Degnim, M.D., Karthik Ghosh, M.D., Robert Vierkant, Shaun Maloney, V. Shane Pankratz, Ph.D., David Hillman, Vera Suman, Ph.D., Jo Johnson, Celine Vachon, Ph.D., L. Joseph Melton III, M.D., and Daniel Visscher, M.D. They were joined by Thomas Sellers, Ph.D., H. Lee Moffitt Cancer Center and Research Institute, Tampa, Fla.; Cassann Blake, M.D., Wayne State University, Detroit; and Thea Tlsty, Ph.D., University of California, San Francisco.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>