Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benign breast disease an important breast cancer risk factor

21.07.2005


A study led by Mayo Clinic Cancer Center adds evidence to a growing body of knowledge that shows women with benign breast disease have a higher risk for breast cancer, and that certain types of breast disease may predict the near-term development of breast cancer. The findings will be published in the July 21 issue of The New England Journal of Medicine.



"Our findings indicate a link between select types of benign breast lesions and the later development of breast cancer," says Lynn Hartmann, M.D., Mayo Clinic oncologist and lead investigator of the study. "Women who have a breast biopsy that is benign must discuss the possibility of additional risks with their doctors."

Benign breast disease refers to any lumps or mammographically-detected abnormalities that have been biopsied and found to not contain cancerous cells. Each year in the United States it is estimated that more than 1 million women have a breast biopsy with benign findings, and Dr. Hartmann encourages clinicians to look more closely at the type of lesions they find. The Mayo team is evaluating various possible risk factors for a later breast cancer, including age at benign biopsy, family history of breast cancer and the pathologic findings of the benign lesion. "Our goal is to do a better job of risk prediction for women with various types of benign breast conditions," says Dr. Hartmann.


Dr. Hartmann and her co-investigators were heartened to find convincing evidence that women with the most common, non-proliferative forms of benign findings had no increased risk of developing breast cancer -- as long as they did not have a strong family history of breast cancer. However, for proliferative and atypical types, the opposite was true, and these lesions pointed to an increased risk of a future breast cancer, even when the family history of breast cancer was negative. Dr. Hartmann and her colleagues say continued studies of this kind are necessary to help understand the process of breast cancer development.

The study population of 9,087 women was drawn from the Mayo Clinic Surgical and Pathology Indices, identifying women ages 18 to 85, who had a biopsy of a benign breast lesion during a 25-year period from Jan. 1, 1967, through Dec. 31, 1991. Family histories were obtained at time of follow-up and from Mayo medical record questionnaires.

All benign breast samples were evaluated by a breast pathologist unaware of initial diagnoses or patient outcomes and assigned to one of three categories of benign breast lesions -- non-proliferative, proliferative and atypical. This information was used to link the risk of subsequent development of breast cancer to specific types of lesions.

In addition to Dr. Hartmann, members of the Mayo Clinic research team included Marlene Frost, Ph.D., Wilma Lingle, Ph.D., Amy Degnim, M.D., Karthik Ghosh, M.D., Robert Vierkant, Shaun Maloney, V. Shane Pankratz, Ph.D., David Hillman, Vera Suman, Ph.D., Jo Johnson, Celine Vachon, Ph.D., L. Joseph Melton III, M.D., and Daniel Visscher, M.D. They were joined by Thomas Sellers, Ph.D., H. Lee Moffitt Cancer Center and Research Institute, Tampa, Fla.; Cassann Blake, M.D., Wayne State University, Detroit; and Thea Tlsty, Ph.D., University of California, San Francisco.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>