Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists advance understanding of the role of a key brain protein in autism

20.07.2005


Results of a genetic linkage analysis of PRKCB1 with autism published



Scientists working at IntegraGen SA, the personalized medicines company, have shown that variations in the gene for protein kinase C beta 1 (PRKCB1), a protein with an important role in brain function, are strongly associated with autism. This exciting finding suggests some answers to a number of previous, but unexplained, observations about autism and provides the potential for a mechanistic explanation for some of the characteristics of the condition. The results of the study are published today in the journal Molecular Psychiatry.

The PRKCB1 gene is expressed in the granule cells within the cerebellum (a region of the brain) where the PRKCB1 protein plays a central role in the transmission of signals by the granule cells to the Purkinje cells. It has previously been reported that there is a decreased number of both granule and Purkinje cells in the brains of autistic individuals and the association of PRKCB1 with autism reported in this study indicates that the cerebellum may play a key role in many of the brain activities that are impaired in autism. Another intriguing observation is that studies using animal models have shown that PRKCB1 is involved in auditory reversal learning. Considered in light of IntegraGen’s results, this suggests that deficiency of the protein might lead to the impairment of this learning capacity, as is frequently seen in autism.


“This is the first time that the protein PRKCB1, and the brain functions it is involved with, have been associated with autism,” explained Dr Jorg Hager, Chief Scientist at IntegraGen. “For this reason, we think that this is a significant development in the field of autism research and we hope it will make an important contribution to understanding the causes of the condition.”

Autism is a complex genetic disorder and it is believed that the combined action of a number of genes may increase a person’s susceptibility to the condition. Genetic researchers at IntegraGen have been using the Company’s novel GenomeHIP™ method to identify genes associated with autism. The Company has so far identified 12 regions of the genome linked to autism and, within those, has been able to specifically identify the region coding for PRKCB1. Work is continuing to identify further genes associated with autism within those loci identified.

As has been shown with this study, IntegraGen’s work to identify the genes involved in autism will contribute towards understanding the mechanisms behind the disease. IntegraGen plans to use its knowledge of the genetic risk factors to develop a genetic risk assessment test for the condition, based on the PRKCB1 and additional genes which it hopes to launch in 2006. The Company envisages that this will be used to help confirm diagnosis and to help patients and families better understand the condition and its causes. They hope that it may also prove to be a useful tool in assessing the risk of the condition developing when a child is still too young to show clear symptoms, so that informed decisions can be made by clinicians as to the use of interventional therapies as early and as appropriately as possible, at a time when they are known to be most effective.

Rowan Minnion | alfa
Further information:
http://www.nature.com/mp/index.html

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>