Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists advance understanding of the role of a key brain protein in autism

20.07.2005


Results of a genetic linkage analysis of PRKCB1 with autism published



Scientists working at IntegraGen SA, the personalized medicines company, have shown that variations in the gene for protein kinase C beta 1 (PRKCB1), a protein with an important role in brain function, are strongly associated with autism. This exciting finding suggests some answers to a number of previous, but unexplained, observations about autism and provides the potential for a mechanistic explanation for some of the characteristics of the condition. The results of the study are published today in the journal Molecular Psychiatry.

The PRKCB1 gene is expressed in the granule cells within the cerebellum (a region of the brain) where the PRKCB1 protein plays a central role in the transmission of signals by the granule cells to the Purkinje cells. It has previously been reported that there is a decreased number of both granule and Purkinje cells in the brains of autistic individuals and the association of PRKCB1 with autism reported in this study indicates that the cerebellum may play a key role in many of the brain activities that are impaired in autism. Another intriguing observation is that studies using animal models have shown that PRKCB1 is involved in auditory reversal learning. Considered in light of IntegraGen’s results, this suggests that deficiency of the protein might lead to the impairment of this learning capacity, as is frequently seen in autism.


“This is the first time that the protein PRKCB1, and the brain functions it is involved with, have been associated with autism,” explained Dr Jorg Hager, Chief Scientist at IntegraGen. “For this reason, we think that this is a significant development in the field of autism research and we hope it will make an important contribution to understanding the causes of the condition.”

Autism is a complex genetic disorder and it is believed that the combined action of a number of genes may increase a person’s susceptibility to the condition. Genetic researchers at IntegraGen have been using the Company’s novel GenomeHIP™ method to identify genes associated with autism. The Company has so far identified 12 regions of the genome linked to autism and, within those, has been able to specifically identify the region coding for PRKCB1. Work is continuing to identify further genes associated with autism within those loci identified.

As has been shown with this study, IntegraGen’s work to identify the genes involved in autism will contribute towards understanding the mechanisms behind the disease. IntegraGen plans to use its knowledge of the genetic risk factors to develop a genetic risk assessment test for the condition, based on the PRKCB1 and additional genes which it hopes to launch in 2006. The Company envisages that this will be used to help confirm diagnosis and to help patients and families better understand the condition and its causes. They hope that it may also prove to be a useful tool in assessing the risk of the condition developing when a child is still too young to show clear symptoms, so that informed decisions can be made by clinicians as to the use of interventional therapies as early and as appropriately as possible, at a time when they are known to be most effective.

Rowan Minnion | alfa
Further information:
http://www.nature.com/mp/index.html

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>