Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists advance understanding of the role of a key brain protein in autism

20.07.2005


Results of a genetic linkage analysis of PRKCB1 with autism published



Scientists working at IntegraGen SA, the personalized medicines company, have shown that variations in the gene for protein kinase C beta 1 (PRKCB1), a protein with an important role in brain function, are strongly associated with autism. This exciting finding suggests some answers to a number of previous, but unexplained, observations about autism and provides the potential for a mechanistic explanation for some of the characteristics of the condition. The results of the study are published today in the journal Molecular Psychiatry.

The PRKCB1 gene is expressed in the granule cells within the cerebellum (a region of the brain) where the PRKCB1 protein plays a central role in the transmission of signals by the granule cells to the Purkinje cells. It has previously been reported that there is a decreased number of both granule and Purkinje cells in the brains of autistic individuals and the association of PRKCB1 with autism reported in this study indicates that the cerebellum may play a key role in many of the brain activities that are impaired in autism. Another intriguing observation is that studies using animal models have shown that PRKCB1 is involved in auditory reversal learning. Considered in light of IntegraGen’s results, this suggests that deficiency of the protein might lead to the impairment of this learning capacity, as is frequently seen in autism.


“This is the first time that the protein PRKCB1, and the brain functions it is involved with, have been associated with autism,” explained Dr Jorg Hager, Chief Scientist at IntegraGen. “For this reason, we think that this is a significant development in the field of autism research and we hope it will make an important contribution to understanding the causes of the condition.”

Autism is a complex genetic disorder and it is believed that the combined action of a number of genes may increase a person’s susceptibility to the condition. Genetic researchers at IntegraGen have been using the Company’s novel GenomeHIP™ method to identify genes associated with autism. The Company has so far identified 12 regions of the genome linked to autism and, within those, has been able to specifically identify the region coding for PRKCB1. Work is continuing to identify further genes associated with autism within those loci identified.

As has been shown with this study, IntegraGen’s work to identify the genes involved in autism will contribute towards understanding the mechanisms behind the disease. IntegraGen plans to use its knowledge of the genetic risk factors to develop a genetic risk assessment test for the condition, based on the PRKCB1 and additional genes which it hopes to launch in 2006. The Company envisages that this will be used to help confirm diagnosis and to help patients and families better understand the condition and its causes. They hope that it may also prove to be a useful tool in assessing the risk of the condition developing when a child is still too young to show clear symptoms, so that informed decisions can be made by clinicians as to the use of interventional therapies as early and as appropriately as possible, at a time when they are known to be most effective.

Rowan Minnion | alfa
Further information:
http://www.nature.com/mp/index.html

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>