Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark comparative genomics study highlights the importance of ’junk’ DNA in higher eukaryotes

15.07.2005


A ground-breaking comparative genomics study appears online today in the journal Genome Research. Led by Adam Siepel, graduate student in Dr. David Haussler’s laboratory at the University of California, Santa Cruz, the study describes the most comprehensive comparison of conserved DNA sequences in the genomes of vertebrates, insects, worms, and yeast to date.



One of their major findings was that as organism complexity increases, so too does the proportion of conserved bases in the non-protein-coding (or "junk") DNA sequences. This underscores the importance of gene regulation in more complex species.

The manuscript also reports exciting biological findings regarding highly conserved DNA elements and the development of a new computational tool for comparing several whole-genome sequences. It was authored by multiple investigators from leading research institutions, including Penn State University (University Park, PA), Washington University School of Medicine (St. Louis, MO), Baylor College of Medicine (Houston, TX), and the University of California, Santa Cruz.


One of the most powerful approaches for pinpointing biologically relevant elements in genomic DNA is to identify sequences that are similar across multiple species. Such approaches are particularly useful for analyzing non-protein-coding sequences – sometimes called "junk" DNA. Although "junk" DNA is poorly understood, the increasing availability of whole-genome sequences is rapidly enhancing the ability of scientists to ascertain the biological significance of these non-protein-coding regions.

"Looking for functional elements in mammalian and other vertebrate genomes is like looking for needles in a haystack," explained Siepel. "By focusing on conserved elements, you get a much smaller haystack. It’s not guaranteed to have every needle in it, and not everything in it is a needle, but you’re much more likely to find a needle if you look in this smaller haystack than if you look in the big one."

Siepel’s team aligned whole-genome sequences for four groups of eukaryotic species (vertebrates, insects, worms, and yeast). The vertebrates included human, mouse, rat, chicken, and pufferfish, and the insects included three species of fruit fly and one species of mosquito. Two worm species and seven yeast species rounded out the set.

To help ease the gargantuan task of identifying conserved elements in multiple alignments of whole-genome sequences, the researchers developed a new computational tool called phastCons. In contrast to traditional tools that compute conservation levels based on sequence similarity at each nucleotide position, phastCons allows for multiple substitutions per site, accounts for unequal rates of substitutions for different nucleotides, and considers the phylogenetic relationships of the species involved.

After applying phastCons to multiple alignments of each of the four groups of eukaryotic species, the researchers estimated that only between 3-8% of the human genome was conserved in the other vertebrate species. On the other hand, the more compact genomes of insects were more highly conserved (37-53%), as were those of worms (18-37%) and yeast (47-68%).

The scientists also observed that the proportion of conserved sequences located outside of protein-coding regions tended to increase with genome length and with the species’ general biological complexity.

Most strikingly, the researchers discovered that two-thirds or more of the conserved DNA sequences in vertebrate and insect species were located outside the exons of protein-coding genes, while non-protein-coding sequences accounted for only about 40% and 15% of the conserved elements in the genomes of worms and yeast, respectively.

"The conserved noncoding story seems to be fairly similar in vertebrates and insects, but looks quite different in worms and yeast," explained Siepel. "These findings support the hypothesis that increased biological complexity in vertebrates and insects derives more from elaborate forms of regulation than from a larger number of protein-coding genes." He noted that the results for the worm group should be interpreted cautiously because the analysis was based on the genomes of only two quite divergent worm species.

"We still understand remarkably little about the function and evolutionary origin of these elements," Haussler added. But the locations of the conserved elements will provide the scientists with some key clues to the potential functions of these sequences.

Some of the strongest sequence conservation in vertebrates was observed in the 3’ untranslated regions (3’UTRs) of genes, which indicates that post-transcriptional regulation may be a widespread and important phenomenon in more complex species. The scientists found positive associations between highly conserved elements (HCEs) in known genes and RNA editing, as well as between HCEs and microRNA targets.

Interestingly, the researchers discovered that many HCEs in vertebrates may encode functional RNAs. The HCEs in introns and intergenic regions in vertebrates were significantly enriched for statistical evidence of local RNA secondary structure, which indicates that many may function as RNA genes.

"There really does seem to be a lot more going on at the RNA level than people would have guessed a few years ago," commented Siepel.

HCEs were also associated with "gene deserts" – long regions of the genome that are devoid of protein-coding genes. This indicates that some of the conserved elements may function as long-range transcriptional regulatory elements.

For genomic scientists, the current study is a major contribution to the field. Not only will the new bioinformatics tool phastCons help researchers identify evolutionarily conserved DNA elements, the reported conserved elements are represented as conservation tracks in the widely used UCSC Genome Browser. "With phastCons and with the conservation tracks in the browser," says Siepel, "we’re trying to make it as easy as possible for researchers to home in on functionally important DNA sequences."

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>