Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory deprivation affects brain’s nerve connections

14.07.2005


Scientists at New York University School of Medicine reveal the important role of early experience in shaping neuronal development and brain plasticity in a new study published in the July 14 issue of the journal Nature.



In mice, the researchers found that sensory deprivation prevented the substantial loss of synapses that typically occurs in growing animals. The effects were most pronounced in the period from young adolescence to adulthood. Synapses are the gaps between neurons through which information travels.

Wen-Biao Gan, Ph.D., Assistant Professor of Physiology and Neuroscience, and his colleagues captured images of brain plasticity--its ability to adapt quickly to ever-changing circumstances--and have started to unravel how this dynamic unfolds. The scientists were able to deliver visible evidence of the effect of sensory deprivation.


It is well known that a growing child learns many skills. "What is less known," says Dr. Gan, "is that during childhood until puberty in the human brain, as well as in the monkey and mouse, you see a substantial loss of neuronal connections." In learning, it appears the brain needs to lose as it gains. He believes this loss may well be the fundamental process underlying the development and plasticity of the brain.

After birth, the number of synapses increases and then decreases sharply. From early childhood to adolescence the synaptic loss could be as much as 50 percent.

Dr. Gan believes that in order for learning to occur, the brain’s neurons have to be pruned. "First there is a raw material, and then it is sculpted," he says. In other words, learning isn’t only about making new connections between neurons, he says, it also involves carving neuronal connections.

The authors of the new study are Yi Zuo, Guang Yang, Elaine Kwon, and Dr. Gan of the Molecular Neurobiology Program at the Skirball Institute of Biomolecular Medicine at NYU School of Medicine.

To get a glimpse of living neurons in mice, the researchers employed a laborious technique for shaving the skulls of the animals. This creates an ultrathin window on the brain through which one can peer using a sophisticated optical technique called two-photon fluorescence microscopy. Dr. Gan looked at dendritic spines, which are thorny nubs found all along the branches of neurons. Spines, which are continuously formed and eliminated, are where synapses are made.

Since mice use their whiskers to explore their world, Dr. Gan altered their experience by trimming the whiskers for two weeks on one side of the mice’s snouts. The spines of these mice were then compared to spines in mice of the same age with untrimmed whiskers. Young mice who kept their whiskers showed more spine loss than their whisker-trimmed litter-mates.

In the adult age group, whisker trimming for two weeks appeared to have no significant effect on spine loss. When the sensory deprivation continued for two months, however, spine loss was slightly reduced in adult animals as well. The scientists therefore found that the period of young adolescence to adulthood was particularly susceptible to sensory deprivation.

Interestingly, in adolescent mice the effects of sensory deprivation on spine loss could be largely reversed if whiskers were allowed to re-grow during a subsequent recovery period, says Dr. Gan. However, the effects of sensory deprivation in young adolescence couldn’t be reversed if sensory recovery occurred after the mice reached adulthood. These findings suggest "that childhood experience has a long lasting and perhaps permanent impact on later life," he says.

Marjorie Shaffer | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>