Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory deprivation affects brain’s nerve connections

14.07.2005


Scientists at New York University School of Medicine reveal the important role of early experience in shaping neuronal development and brain plasticity in a new study published in the July 14 issue of the journal Nature.



In mice, the researchers found that sensory deprivation prevented the substantial loss of synapses that typically occurs in growing animals. The effects were most pronounced in the period from young adolescence to adulthood. Synapses are the gaps between neurons through which information travels.

Wen-Biao Gan, Ph.D., Assistant Professor of Physiology and Neuroscience, and his colleagues captured images of brain plasticity--its ability to adapt quickly to ever-changing circumstances--and have started to unravel how this dynamic unfolds. The scientists were able to deliver visible evidence of the effect of sensory deprivation.


It is well known that a growing child learns many skills. "What is less known," says Dr. Gan, "is that during childhood until puberty in the human brain, as well as in the monkey and mouse, you see a substantial loss of neuronal connections." In learning, it appears the brain needs to lose as it gains. He believes this loss may well be the fundamental process underlying the development and plasticity of the brain.

After birth, the number of synapses increases and then decreases sharply. From early childhood to adolescence the synaptic loss could be as much as 50 percent.

Dr. Gan believes that in order for learning to occur, the brain’s neurons have to be pruned. "First there is a raw material, and then it is sculpted," he says. In other words, learning isn’t only about making new connections between neurons, he says, it also involves carving neuronal connections.

The authors of the new study are Yi Zuo, Guang Yang, Elaine Kwon, and Dr. Gan of the Molecular Neurobiology Program at the Skirball Institute of Biomolecular Medicine at NYU School of Medicine.

To get a glimpse of living neurons in mice, the researchers employed a laborious technique for shaving the skulls of the animals. This creates an ultrathin window on the brain through which one can peer using a sophisticated optical technique called two-photon fluorescence microscopy. Dr. Gan looked at dendritic spines, which are thorny nubs found all along the branches of neurons. Spines, which are continuously formed and eliminated, are where synapses are made.

Since mice use their whiskers to explore their world, Dr. Gan altered their experience by trimming the whiskers for two weeks on one side of the mice’s snouts. The spines of these mice were then compared to spines in mice of the same age with untrimmed whiskers. Young mice who kept their whiskers showed more spine loss than their whisker-trimmed litter-mates.

In the adult age group, whisker trimming for two weeks appeared to have no significant effect on spine loss. When the sensory deprivation continued for two months, however, spine loss was slightly reduced in adult animals as well. The scientists therefore found that the period of young adolescence to adulthood was particularly susceptible to sensory deprivation.

Interestingly, in adolescent mice the effects of sensory deprivation on spine loss could be largely reversed if whiskers were allowed to re-grow during a subsequent recovery period, says Dr. Gan. However, the effects of sensory deprivation in young adolescence couldn’t be reversed if sensory recovery occurred after the mice reached adulthood. These findings suggest "that childhood experience has a long lasting and perhaps permanent impact on later life," he says.

Marjorie Shaffer | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>