Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory dinosaurs had bird-like pulmonary system

14.07.2005


What could the fierce dinosaur T. rex and a modern songbird such as the sparrow possibly have in common? Their pulmonary systems may have been more similar than scientists previously thought, according to new research from Ohio University and Harvard University.



Though some scientists have proposed that predatory dinosaurs had lungs similar to crocodiles and other reptiles, a new study published in this week’s issue of the journal Nature suggests the ancient beasts boasted a much bigger, more complex system of air sacs similar to that in today’s birds. The finding is one of several studies in recent years to paint a new, more avian-like portrait of meat-eaters such as T. rex: The creatures may have had feathers, incubated their eggs, grown quickly and perhaps even breathed like birds.

"What was once formally considered unique to birds was present in some form in the ancestors of birds," said Patrick O’Connor, an assistant professor of biomedical sciences at Ohio University’s College of Osteopathic Medicine and lead author on the study, which was funded in part by the National Science Foundation.


O’Connor and collaborator Leon Claessens of Harvard University visited museums in New York, Berkeley, Chicago, Pittsburgh, Washington, D.C., Berlin and London to examine the bones of ancient beasts, and also studied a 67-million-year-old dinosaur, Majungatholus atopus, that O’Connor had discovered in Madagascar as a graduate student in 1996. They compared the dinosaur skeletons with those of modern birds to draw comparisons of how the soft tissues in the dinosaurs may have been structured.

Birds long have fascinated biologists because of their unusual pulmonary system. Pulmonary air sacs prompt air to pass through the lungs twice during ventilation. This system also creates holes in the skeleton of birds, which has led to a popular notion that birds have "air in their bones," O’Connor said.

The new study, which examined how the air system invades the skeleton in areas such as the neck, chest and hips, finds similarities between the vertebral column of dinosaurs and birds that point to a common soft tissue system as the culprit. Though probably not identical to living birds, "it’s nothing like the crocodile system as we know it," O’Connor said.

"The pulmonary system of meat-eating dinosaurs such as T. rex in fact shares many structural similarities with that of modern birds, which, from an engineering point of view, may possess the most efficient respiratory system of any living vertebrate inhabiting the land or sky," said Claessens, who received a Ph.D. from Harvard in organismic and evolutionary biology last month and will join the faculty at the College of the Holy Cross in Worcester, Mass., this fall.

In birds, this special anatomical configuration increases the gas exchange potential within the lungs, boosting metabolism and creating warm-bloodedness. The researchers are quick to point out, however, that the new study doesn’t clearly peg predatory dinosaurs as habitually warm-blooded animals. The creatures probably had a more complex strategy, falling somewhere between what scientists define as cold- and warm-blooded. It appears that these animals had the pulmonary machinery for enhanced gas exchange, O’Connor explained, which would have pushed them closer to being warm-blooded creatures.

Previous research that pointed to a more crocodilian-like pulmonary system was based on a study of two dinosaur skeletons encased in rock. O’Connor and Claessens have expanded on that research by studying a broader collection of dinosaur skeletal remains, and are the first to integrate both anatomical and functional studies of modern birds as models of how the ancient creatures’ air sacs were structured.

The scientists are part of a reinvigorated movement of researchers who are examining dinosaur bones and comparing them with modern animals to learn more about the anatomy of these extinct beasts.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>