Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory dinosaurs had bird-like pulmonary system

14.07.2005


What could the fierce dinosaur T. rex and a modern songbird such as the sparrow possibly have in common? Their pulmonary systems may have been more similar than scientists previously thought, according to new research from Ohio University and Harvard University.



Though some scientists have proposed that predatory dinosaurs had lungs similar to crocodiles and other reptiles, a new study published in this week’s issue of the journal Nature suggests the ancient beasts boasted a much bigger, more complex system of air sacs similar to that in today’s birds. The finding is one of several studies in recent years to paint a new, more avian-like portrait of meat-eaters such as T. rex: The creatures may have had feathers, incubated their eggs, grown quickly and perhaps even breathed like birds.

"What was once formally considered unique to birds was present in some form in the ancestors of birds," said Patrick O’Connor, an assistant professor of biomedical sciences at Ohio University’s College of Osteopathic Medicine and lead author on the study, which was funded in part by the National Science Foundation.


O’Connor and collaborator Leon Claessens of Harvard University visited museums in New York, Berkeley, Chicago, Pittsburgh, Washington, D.C., Berlin and London to examine the bones of ancient beasts, and also studied a 67-million-year-old dinosaur, Majungatholus atopus, that O’Connor had discovered in Madagascar as a graduate student in 1996. They compared the dinosaur skeletons with those of modern birds to draw comparisons of how the soft tissues in the dinosaurs may have been structured.

Birds long have fascinated biologists because of their unusual pulmonary system. Pulmonary air sacs prompt air to pass through the lungs twice during ventilation. This system also creates holes in the skeleton of birds, which has led to a popular notion that birds have "air in their bones," O’Connor said.

The new study, which examined how the air system invades the skeleton in areas such as the neck, chest and hips, finds similarities between the vertebral column of dinosaurs and birds that point to a common soft tissue system as the culprit. Though probably not identical to living birds, "it’s nothing like the crocodile system as we know it," O’Connor said.

"The pulmonary system of meat-eating dinosaurs such as T. rex in fact shares many structural similarities with that of modern birds, which, from an engineering point of view, may possess the most efficient respiratory system of any living vertebrate inhabiting the land or sky," said Claessens, who received a Ph.D. from Harvard in organismic and evolutionary biology last month and will join the faculty at the College of the Holy Cross in Worcester, Mass., this fall.

In birds, this special anatomical configuration increases the gas exchange potential within the lungs, boosting metabolism and creating warm-bloodedness. The researchers are quick to point out, however, that the new study doesn’t clearly peg predatory dinosaurs as habitually warm-blooded animals. The creatures probably had a more complex strategy, falling somewhere between what scientists define as cold- and warm-blooded. It appears that these animals had the pulmonary machinery for enhanced gas exchange, O’Connor explained, which would have pushed them closer to being warm-blooded creatures.

Previous research that pointed to a more crocodilian-like pulmonary system was based on a study of two dinosaur skeletons encased in rock. O’Connor and Claessens have expanded on that research by studying a broader collection of dinosaur skeletal remains, and are the first to integrate both anatomical and functional studies of modern birds as models of how the ancient creatures’ air sacs were structured.

The scientists are part of a reinvigorated movement of researchers who are examining dinosaur bones and comparing them with modern animals to learn more about the anatomy of these extinct beasts.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>