Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory dinosaurs had bird-like pulmonary system

14.07.2005


What could the fierce dinosaur T. rex and a modern songbird such as the sparrow possibly have in common? Their pulmonary systems may have been more similar than scientists previously thought, according to new research from Ohio University and Harvard University.



Though some scientists have proposed that predatory dinosaurs had lungs similar to crocodiles and other reptiles, a new study published in this week’s issue of the journal Nature suggests the ancient beasts boasted a much bigger, more complex system of air sacs similar to that in today’s birds. The finding is one of several studies in recent years to paint a new, more avian-like portrait of meat-eaters such as T. rex: The creatures may have had feathers, incubated their eggs, grown quickly and perhaps even breathed like birds.

"What was once formally considered unique to birds was present in some form in the ancestors of birds," said Patrick O’Connor, an assistant professor of biomedical sciences at Ohio University’s College of Osteopathic Medicine and lead author on the study, which was funded in part by the National Science Foundation.


O’Connor and collaborator Leon Claessens of Harvard University visited museums in New York, Berkeley, Chicago, Pittsburgh, Washington, D.C., Berlin and London to examine the bones of ancient beasts, and also studied a 67-million-year-old dinosaur, Majungatholus atopus, that O’Connor had discovered in Madagascar as a graduate student in 1996. They compared the dinosaur skeletons with those of modern birds to draw comparisons of how the soft tissues in the dinosaurs may have been structured.

Birds long have fascinated biologists because of their unusual pulmonary system. Pulmonary air sacs prompt air to pass through the lungs twice during ventilation. This system also creates holes in the skeleton of birds, which has led to a popular notion that birds have "air in their bones," O’Connor said.

The new study, which examined how the air system invades the skeleton in areas such as the neck, chest and hips, finds similarities between the vertebral column of dinosaurs and birds that point to a common soft tissue system as the culprit. Though probably not identical to living birds, "it’s nothing like the crocodile system as we know it," O’Connor said.

"The pulmonary system of meat-eating dinosaurs such as T. rex in fact shares many structural similarities with that of modern birds, which, from an engineering point of view, may possess the most efficient respiratory system of any living vertebrate inhabiting the land or sky," said Claessens, who received a Ph.D. from Harvard in organismic and evolutionary biology last month and will join the faculty at the College of the Holy Cross in Worcester, Mass., this fall.

In birds, this special anatomical configuration increases the gas exchange potential within the lungs, boosting metabolism and creating warm-bloodedness. The researchers are quick to point out, however, that the new study doesn’t clearly peg predatory dinosaurs as habitually warm-blooded animals. The creatures probably had a more complex strategy, falling somewhere between what scientists define as cold- and warm-blooded. It appears that these animals had the pulmonary machinery for enhanced gas exchange, O’Connor explained, which would have pushed them closer to being warm-blooded creatures.

Previous research that pointed to a more crocodilian-like pulmonary system was based on a study of two dinosaur skeletons encased in rock. O’Connor and Claessens have expanded on that research by studying a broader collection of dinosaur skeletal remains, and are the first to integrate both anatomical and functional studies of modern birds as models of how the ancient creatures’ air sacs were structured.

The scientists are part of a reinvigorated movement of researchers who are examining dinosaur bones and comparing them with modern animals to learn more about the anatomy of these extinct beasts.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>