Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory dinosaurs had bird-like pulmonary system

14.07.2005


What could the fierce dinosaur T. rex and a modern songbird such as the sparrow possibly have in common? Their pulmonary systems may have been more similar than scientists previously thought, according to new research from Ohio University and Harvard University.



Though some scientists have proposed that predatory dinosaurs had lungs similar to crocodiles and other reptiles, a new study published in this week’s issue of the journal Nature suggests the ancient beasts boasted a much bigger, more complex system of air sacs similar to that in today’s birds. The finding is one of several studies in recent years to paint a new, more avian-like portrait of meat-eaters such as T. rex: The creatures may have had feathers, incubated their eggs, grown quickly and perhaps even breathed like birds.

"What was once formally considered unique to birds was present in some form in the ancestors of birds," said Patrick O’Connor, an assistant professor of biomedical sciences at Ohio University’s College of Osteopathic Medicine and lead author on the study, which was funded in part by the National Science Foundation.


O’Connor and collaborator Leon Claessens of Harvard University visited museums in New York, Berkeley, Chicago, Pittsburgh, Washington, D.C., Berlin and London to examine the bones of ancient beasts, and also studied a 67-million-year-old dinosaur, Majungatholus atopus, that O’Connor had discovered in Madagascar as a graduate student in 1996. They compared the dinosaur skeletons with those of modern birds to draw comparisons of how the soft tissues in the dinosaurs may have been structured.

Birds long have fascinated biologists because of their unusual pulmonary system. Pulmonary air sacs prompt air to pass through the lungs twice during ventilation. This system also creates holes in the skeleton of birds, which has led to a popular notion that birds have "air in their bones," O’Connor said.

The new study, which examined how the air system invades the skeleton in areas such as the neck, chest and hips, finds similarities between the vertebral column of dinosaurs and birds that point to a common soft tissue system as the culprit. Though probably not identical to living birds, "it’s nothing like the crocodile system as we know it," O’Connor said.

"The pulmonary system of meat-eating dinosaurs such as T. rex in fact shares many structural similarities with that of modern birds, which, from an engineering point of view, may possess the most efficient respiratory system of any living vertebrate inhabiting the land or sky," said Claessens, who received a Ph.D. from Harvard in organismic and evolutionary biology last month and will join the faculty at the College of the Holy Cross in Worcester, Mass., this fall.

In birds, this special anatomical configuration increases the gas exchange potential within the lungs, boosting metabolism and creating warm-bloodedness. The researchers are quick to point out, however, that the new study doesn’t clearly peg predatory dinosaurs as habitually warm-blooded animals. The creatures probably had a more complex strategy, falling somewhere between what scientists define as cold- and warm-blooded. It appears that these animals had the pulmonary machinery for enhanced gas exchange, O’Connor explained, which would have pushed them closer to being warm-blooded creatures.

Previous research that pointed to a more crocodilian-like pulmonary system was based on a study of two dinosaur skeletons encased in rock. O’Connor and Claessens have expanded on that research by studying a broader collection of dinosaur skeletal remains, and are the first to integrate both anatomical and functional studies of modern birds as models of how the ancient creatures’ air sacs were structured.

The scientists are part of a reinvigorated movement of researchers who are examining dinosaur bones and comparing them with modern animals to learn more about the anatomy of these extinct beasts.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>