Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study shows use of Lorenzo’s oil prevents onset of pediatric neurological disorder


Treatment prevents symptoms for majority of young boys with adrenoleukodystrophy, ALD

Use of Lorenzo’s Oil in young boys who have been diagnosed with but are not yet showing signs of a pediatric neurological disorder known as X-linked adrenoleukodystrophy (X-ALD) may prevent the disease from developing in the body. According to a study of male children published today in the Archives of Neurology, use of the oil prevented onset of the disease in a majority of cases. For the first time, the study demonstrated the preventive effects of Lorenzo’s Oil using rigorous and scientifically-accepted research methods.

The study followed 89 boys ages seven and younger who tested positive for an abnormal gene that identifies X-ALD. Over a period of seven years, researchers treated the boys with daily oral doses of Lorenzo’s Oil, a combination of two fats extracted from olive oil and rapeseed oil, and moderately restricted their dietary fat. All patients had a normal brain MRI and showed no neurological signs and symptoms of X-ALD prior to the study. At the completion of the study, nearly three-fourths (74 percent) of the 89 patients showed no signs of disease progression, demonstrating a significant preventive effect. Researchers correlated greater compliance with a lower risk of developing the disease.

"This clinical study clearly demonstrates that the use of Lorenzo’s Oil can prevent the onset of the rapidly progressive and devastating form of the brain disease that affects 50 percent of boys with X-ALD," said Hugo Moser, M.D., Director of the Neurogenetics Research Center at the Kennedy Krieger Institute in Baltimore, Md., and lead author of the study. "This finding is an exciting progression of the research to which my associates and I have dedicated ourselves to help these children."

X-ALD affects 16,000 patients in the United States. The disease causes the breakdown of myelin, a fatty substance that acts as an insulator around nerve fibers. Symptoms appear between four and 10 years of age, and can lead to nerve deterioration, loss of verbal communication, strength and coordination and, eventually, complete breakdown of bodily function.

"The results of this trial offer clinical support for treating the many young boys identified at high-risk for the disease," said Gary Goldstein, M.D., CEO of the Kennedy Krieger Institute. "This advance results from truly collaborative efforts between researchers in the medical community, parents and advocates for these patients."

There is still no cure for X-ALD, and treatment options are limited to hormone therapy and bone marrow transplants. While these transplants can provide important long-term benefits to boys with X-ALD in whom brain involvement is still in the early stages, the procedure carries a significant risk of mortality and morbidity, and is not effective when brain involvement is already severe.

About Lorenzo’s Oil

Lorenzo’s Oil was invented by Augusto and Michaela Odone, who began researching X-ALD and advocating for improved research after their son, Lorenzo, was diagnosed with the disease in 1984. The oil, named after the Odone’s son, reduces the amount of abnormal fatty acids in the body that cause myelin degeneration. While the oil cannot repair damage already done, it can prevent the disease from progressing into a degenerative state. Though Lorenzo already showed symptoms before he began taking the oil, the treatment stopped the progression of the disease. He celebrated his 27th birthday on May 29, 2005. The story of the Odone’s struggle against X-ALD was dramatized in the 1992 Universal Studios motion picture Lorenzo’s Oil, starring Nick Nolte and Susan Sarandon.

About Hugo Moser, M.D.

Hugo Moser, M.D. is a research scientist and Director of the Neurogenetics Research Center at the Kennedy Krieger Institute in Baltimore, Maryland. Dr. Moser is also a University Professor of Neurology and Pediatrics at Johns Hopkins University. He was previously President of the Kennedy Krieger Institute.

Dr. Moser has focused his research on genetic disorders that affect the function of the nervous system in children, particularly those that involve a part of the cell referred to as the peroxisome. Of the 15 known peroxisomal disorders that lead to mental retardation and nervous system disabilities, the most common is ALD. Dr. Moser helped to identify the characteristic biochemical abnormalities and the gene mutations that cause each of these disorders. He established methods of early diagnosis, counseling and worldwide programs to evaluate methods of therapy, including diet, pharmacological agents and transplantation.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 11,000 children each year through inpatient and day treatment programs, outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop and pioneering new interventions and earlier diagnosis.

Colleen O’Malley | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>