Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows use of Lorenzo’s oil prevents onset of pediatric neurological disorder

12.07.2005


Treatment prevents symptoms for majority of young boys with adrenoleukodystrophy, ALD



Use of Lorenzo’s Oil in young boys who have been diagnosed with but are not yet showing signs of a pediatric neurological disorder known as X-linked adrenoleukodystrophy (X-ALD) may prevent the disease from developing in the body. According to a study of male children published today in the Archives of Neurology, use of the oil prevented onset of the disease in a majority of cases. For the first time, the study demonstrated the preventive effects of Lorenzo’s Oil using rigorous and scientifically-accepted research methods.

The study followed 89 boys ages seven and younger who tested positive for an abnormal gene that identifies X-ALD. Over a period of seven years, researchers treated the boys with daily oral doses of Lorenzo’s Oil, a combination of two fats extracted from olive oil and rapeseed oil, and moderately restricted their dietary fat. All patients had a normal brain MRI and showed no neurological signs and symptoms of X-ALD prior to the study. At the completion of the study, nearly three-fourths (74 percent) of the 89 patients showed no signs of disease progression, demonstrating a significant preventive effect. Researchers correlated greater compliance with a lower risk of developing the disease.


"This clinical study clearly demonstrates that the use of Lorenzo’s Oil can prevent the onset of the rapidly progressive and devastating form of the brain disease that affects 50 percent of boys with X-ALD," said Hugo Moser, M.D., Director of the Neurogenetics Research Center at the Kennedy Krieger Institute in Baltimore, Md., and lead author of the study. "This finding is an exciting progression of the research to which my associates and I have dedicated ourselves to help these children."

X-ALD affects 16,000 patients in the United States. The disease causes the breakdown of myelin, a fatty substance that acts as an insulator around nerve fibers. Symptoms appear between four and 10 years of age, and can lead to nerve deterioration, loss of verbal communication, strength and coordination and, eventually, complete breakdown of bodily function.

"The results of this trial offer clinical support for treating the many young boys identified at high-risk for the disease," said Gary Goldstein, M.D., CEO of the Kennedy Krieger Institute. "This advance results from truly collaborative efforts between researchers in the medical community, parents and advocates for these patients."

There is still no cure for X-ALD, and treatment options are limited to hormone therapy and bone marrow transplants. While these transplants can provide important long-term benefits to boys with X-ALD in whom brain involvement is still in the early stages, the procedure carries a significant risk of mortality and morbidity, and is not effective when brain involvement is already severe.

About Lorenzo’s Oil

Lorenzo’s Oil was invented by Augusto and Michaela Odone, who began researching X-ALD and advocating for improved research after their son, Lorenzo, was diagnosed with the disease in 1984. The oil, named after the Odone’s son, reduces the amount of abnormal fatty acids in the body that cause myelin degeneration. While the oil cannot repair damage already done, it can prevent the disease from progressing into a degenerative state. Though Lorenzo already showed symptoms before he began taking the oil, the treatment stopped the progression of the disease. He celebrated his 27th birthday on May 29, 2005. The story of the Odone’s struggle against X-ALD was dramatized in the 1992 Universal Studios motion picture Lorenzo’s Oil, starring Nick Nolte and Susan Sarandon.

About Hugo Moser, M.D.

Hugo Moser, M.D. is a research scientist and Director of the Neurogenetics Research Center at the Kennedy Krieger Institute in Baltimore, Maryland. Dr. Moser is also a University Professor of Neurology and Pediatrics at Johns Hopkins University. He was previously President of the Kennedy Krieger Institute.

Dr. Moser has focused his research on genetic disorders that affect the function of the nervous system in children, particularly those that involve a part of the cell referred to as the peroxisome. Of the 15 known peroxisomal disorders that lead to mental retardation and nervous system disabilities, the most common is ALD. Dr. Moser helped to identify the characteristic biochemical abnormalities and the gene mutations that cause each of these disorders. He established methods of early diagnosis, counseling and worldwide programs to evaluate methods of therapy, including diet, pharmacological agents and transplantation.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 11,000 children each year through inpatient and day treatment programs, outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop and pioneering new interventions and earlier diagnosis.

Colleen O’Malley | EurekAlert!
Further information:
http://www.kennedykrieger.org/
http://www.spectrumscience.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>