Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bad Cholesterol: Genes Make the Difference


Why does it seem like some people can eat all the ice cream they want without increasing their cholesterol or gaining much weight, while others with high cholesterol have to watch their diets like a hawk? Because no matter what their lifestyle, people’s genes play an overriding role in their cholesterol response.

So says a new study by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory and the Children’s Hospital Oakland Research Institute (CHORI), conducted by Paul Williams of Berkeley Lab’s Life Sciences Division in collaboration with Robin Rawlings and Patricia Blanche of CHORI and Ronald M. Krauss of CHORI and Berkeley Lab’s Genomics Division. They report their findings in the July 8, 2005, issue of the American Journal of Clinical Nutrition.

The investigators analyzed how "bad" cholesterol (low-density lipoprotein, or LDL, cholesterol) responded to diets that were either high or low in fat in 28 pairs of identical male twins — one twin a vigorous exerciser, the other a comparative couch potato.

"Although identical twins share exactly the same genes, we chose these twins because they had very different lifestyles," says Williams. "One member of each pair was a regular long-distance runner, someone we contacted through Runner’s World magazine or at races around the country. His brother clocked 40 kilometers a week less, at least, if he exercised at all."

For six weeks the twins ate either a high-fat diet (40 percent of its calories from fat) or a low-fat diet (only 20 percent of its calories from fat); then the pairs switched diets for another six weeks. After each six-week period the twins’ blood cholesterol levels were tested.

The researchers were interested in learning if blood cholesterol changes due to the different diets would be the same or different in each pair of genetically identical twins, even though their lifestyles were very different. A correlation of zero between the two would mean that their responses to the diets had no relation to each other, while a correlation of 1.0 would mean that their responses were identical.

The researchers found an astounding 0.7 correlation in responses to the change in diet, an incredibly strong similarity in the way each pair of twins responded — even though the responses themselves among different pairs of twins differed considerably.

"If one of the twins could eat a high-fat diet without increasing his bad cholesterol, then so could his brother," says Williams. "But if one of the twins’ LDL cholesterol shot up when they went on the high-fat diet, his brother’s did too."

The correlations showed that the twins had very similar changes in LDL cholesterol because they had the same genes. Some twins had one or more genes that made them very sensitive to the amount of fat in their diets. Other twins had genes that made them insensitive to dietary fat, no matter how much they exercised.

"Our experiment shows how important our genes are," says Williams. "Some people have to be careful about their diets, while others have much more freedom in their dietary choices."

He adds, "This type of experiment allows us to test whether genes are important without having to identify the specific genes involved." Although several specific genes have been associated with cholesterol changes in response to changes in diet, these cannot account for the large correlations seen in this study. Williams hopes his findings will inspire additional research to identify the specific genes involved.

"Concordant lipoprotein and weight responses to dietary fat change in identical twins with divergent exercise levels," by Paul T. Williams, Patricia J. Blanche, Robin Rawlings, and Ronald M. Krauss, appears in the July 8, 2005, issue of the American Journal of Clinical Nutrition. The work was supported by Dairy Management Incorporated, with additional support from the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Paul Preuss | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>