Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad Cholesterol: Genes Make the Difference

08.07.2005


Why does it seem like some people can eat all the ice cream they want without increasing their cholesterol or gaining much weight, while others with high cholesterol have to watch their diets like a hawk? Because no matter what their lifestyle, people’s genes play an overriding role in their cholesterol response.



So says a new study by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory and the Children’s Hospital Oakland Research Institute (CHORI), conducted by Paul Williams of Berkeley Lab’s Life Sciences Division in collaboration with Robin Rawlings and Patricia Blanche of CHORI and Ronald M. Krauss of CHORI and Berkeley Lab’s Genomics Division. They report their findings in the July 8, 2005, issue of the American Journal of Clinical Nutrition.

The investigators analyzed how "bad" cholesterol (low-density lipoprotein, or LDL, cholesterol) responded to diets that were either high or low in fat in 28 pairs of identical male twins — one twin a vigorous exerciser, the other a comparative couch potato.


"Although identical twins share exactly the same genes, we chose these twins because they had very different lifestyles," says Williams. "One member of each pair was a regular long-distance runner, someone we contacted through Runner’s World magazine or at races around the country. His brother clocked 40 kilometers a week less, at least, if he exercised at all."

For six weeks the twins ate either a high-fat diet (40 percent of its calories from fat) or a low-fat diet (only 20 percent of its calories from fat); then the pairs switched diets for another six weeks. After each six-week period the twins’ blood cholesterol levels were tested.

The researchers were interested in learning if blood cholesterol changes due to the different diets would be the same or different in each pair of genetically identical twins, even though their lifestyles were very different. A correlation of zero between the two would mean that their responses to the diets had no relation to each other, while a correlation of 1.0 would mean that their responses were identical.

The researchers found an astounding 0.7 correlation in responses to the change in diet, an incredibly strong similarity in the way each pair of twins responded — even though the responses themselves among different pairs of twins differed considerably.

"If one of the twins could eat a high-fat diet without increasing his bad cholesterol, then so could his brother," says Williams. "But if one of the twins’ LDL cholesterol shot up when they went on the high-fat diet, his brother’s did too."

The correlations showed that the twins had very similar changes in LDL cholesterol because they had the same genes. Some twins had one or more genes that made them very sensitive to the amount of fat in their diets. Other twins had genes that made them insensitive to dietary fat, no matter how much they exercised.

"Our experiment shows how important our genes are," says Williams. "Some people have to be careful about their diets, while others have much more freedom in their dietary choices."

He adds, "This type of experiment allows us to test whether genes are important without having to identify the specific genes involved." Although several specific genes have been associated with cholesterol changes in response to changes in diet, these cannot account for the large correlations seen in this study. Williams hopes his findings will inspire additional research to identify the specific genes involved.

"Concordant lipoprotein and weight responses to dietary fat change in identical twins with divergent exercise levels," by Paul T. Williams, Patricia J. Blanche, Robin Rawlings, and Ronald M. Krauss, appears in the July 8, 2005, issue of the American Journal of Clinical Nutrition. The work was supported by Dairy Management Incorporated, with additional support from the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>