Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad Cholesterol: Genes Make the Difference

08.07.2005


Why does it seem like some people can eat all the ice cream they want without increasing their cholesterol or gaining much weight, while others with high cholesterol have to watch their diets like a hawk? Because no matter what their lifestyle, people’s genes play an overriding role in their cholesterol response.



So says a new study by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory and the Children’s Hospital Oakland Research Institute (CHORI), conducted by Paul Williams of Berkeley Lab’s Life Sciences Division in collaboration with Robin Rawlings and Patricia Blanche of CHORI and Ronald M. Krauss of CHORI and Berkeley Lab’s Genomics Division. They report their findings in the July 8, 2005, issue of the American Journal of Clinical Nutrition.

The investigators analyzed how "bad" cholesterol (low-density lipoprotein, or LDL, cholesterol) responded to diets that were either high or low in fat in 28 pairs of identical male twins — one twin a vigorous exerciser, the other a comparative couch potato.


"Although identical twins share exactly the same genes, we chose these twins because they had very different lifestyles," says Williams. "One member of each pair was a regular long-distance runner, someone we contacted through Runner’s World magazine or at races around the country. His brother clocked 40 kilometers a week less, at least, if he exercised at all."

For six weeks the twins ate either a high-fat diet (40 percent of its calories from fat) or a low-fat diet (only 20 percent of its calories from fat); then the pairs switched diets for another six weeks. After each six-week period the twins’ blood cholesterol levels were tested.

The researchers were interested in learning if blood cholesterol changes due to the different diets would be the same or different in each pair of genetically identical twins, even though their lifestyles were very different. A correlation of zero between the two would mean that their responses to the diets had no relation to each other, while a correlation of 1.0 would mean that their responses were identical.

The researchers found an astounding 0.7 correlation in responses to the change in diet, an incredibly strong similarity in the way each pair of twins responded — even though the responses themselves among different pairs of twins differed considerably.

"If one of the twins could eat a high-fat diet without increasing his bad cholesterol, then so could his brother," says Williams. "But if one of the twins’ LDL cholesterol shot up when they went on the high-fat diet, his brother’s did too."

The correlations showed that the twins had very similar changes in LDL cholesterol because they had the same genes. Some twins had one or more genes that made them very sensitive to the amount of fat in their diets. Other twins had genes that made them insensitive to dietary fat, no matter how much they exercised.

"Our experiment shows how important our genes are," says Williams. "Some people have to be careful about their diets, while others have much more freedom in their dietary choices."

He adds, "This type of experiment allows us to test whether genes are important without having to identify the specific genes involved." Although several specific genes have been associated with cholesterol changes in response to changes in diet, these cannot account for the large correlations seen in this study. Williams hopes his findings will inspire additional research to identify the specific genes involved.

"Concordant lipoprotein and weight responses to dietary fat change in identical twins with divergent exercise levels," by Paul T. Williams, Patricia J. Blanche, Robin Rawlings, and Ronald M. Krauss, appears in the July 8, 2005, issue of the American Journal of Clinical Nutrition. The work was supported by Dairy Management Incorporated, with additional support from the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>