Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research puts a fresh spin on current thinking of speech evolution in humans

01.07.2005


A study published today in the prestigious journal Nature by Dr. Michael Petrides and colleagues at the Montreal Neurological Institute (MNI) at McGill University, challenges current thinking that speech developed as a result of new structures that evolved in the human brain. Dr. Petrides and colleagues have identified a distinct brain region that controls jaw movements in macaque monkeys that is comparable to Broca’s area - the region in the human brain critical for speech production. This discovery is important as it suggests that this area of the brain evolved originally to perform high-order control over the mouth and the jaw, and that as humans evolved this area came to control the movements necessary for speech.



“Our study shows that nonlinguistic monkeys possess an area comparable to Broca’s area – it is located in the same region and has the same anatomical characteristics as Broca’s area in the human brain“, explained Dr. Michael Petrides, Coordinator of the Cognitive Neuroscience Unit at the MNI and Professor in the Department of Neurology and Neurosurgery, McGill University.

"The researchers performed quantitative microscopic analysis of the cytoarchitecture of the region of interest and electrophysiological stimulation and recording within this region.


When this area in the monkey was electrically stimulated, oral and facial motor responses were evoked – such as jaw movement sequences, as well as respiratory responses. In addition, Broca’s area is connected with a region of the brain immediately in front of it that is involved in the retrieval of information from memory.

“These connections suggest to us that Broca’s area is in a unique position to use information shared from past experience and which is stored in memory for the service of communicative acts,” explains Dr. Petrides. “That is, Broca’s area may have evolved originally as an area exercising high-level control over oral and facial actions, including those related to communicative acts, and that, in the human brain, this area eventually came to control also certain aspects of the speech act.“

The researchers hope that future studies of the anatomy and physiology of this region will yield major new insights as to why Broca’s area became involved with speech in the human brain.

This research was supported by grants from the Canadian Institutes of Health Research and the James S. McDonnell Foundation.

The Canadian Institutes of Health Research (CIHR) is the Government of Canada’s agency for health research. CIHR’s mission is to create new scientific knowledge and to catalyze its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to close to 10,000 health researchers and trainees across Canada.

The Montreal Neurological Institute (www.mni.mcgill.ca) is a McGill University research and teaching institute, dedicated to the study of the nervous system and neurological diseases. Founded in 1934 by the renowned Dr. Wilder Penfield, the MNI is one of the world’s largest institutes of its kind. MNI researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. The MNI, with its clinical partner, the Montreal Neurological Hospital (MNH), part of the McGill University Health Centre, continues to integrate research, patient care and training, and is recognized as one of the premier neuroscience centres in the world. Already well known for its McConnell Brain Imaging Centre, the MNI will expand its brain imaging research in the next several years through a $28 million award from the Canada Foundation for Innovation, made in partnership with the government of Quebec. There will also be further development of MNI initiatives in multiple sclerosis, optical imaging and nano-neuroscience.

Sandra McPherson | EurekAlert!
Further information:
http://www.cihr-irsc.gc.ca
http://www.mcgill.ca
http://www.muhc.ca

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>