Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cornell study suggests that mental processing is continuous, not like a computer

28.06.2005


The theory that the mind works like a computer, in a series of distinct stages, was an important steppingstone in cognitive science, but it has outlived its usefulness, concludes a new Cornell University study. Instead, the mind should be thought of more as working the way biological organisms do: as a dynamic continuum, cascading through shades of grey.



In a new study published online this week in Proceedings of the National Academy of Sciences (June 27-July 1), Michael Spivey, a psycholinguist and associate professor of psychology at Cornell, tracked the mouse movements of undergraduate students while working at a computer. The findings provide compelling evidence that language comprehension is a continuous process.

"For decades, the cognitive and neural sciences have treated mental processes as though they involved passing discrete packets of information in a strictly feed-forward fashion from one cognitive module to the next or in a string of individuated binary symbols -- like a digital computer," said Spivey. "More recently, however, a growing number of studies, such as ours, support dynamical-systems approaches to the mind. In this model, perception and cognition are mathematically described as a continuous trajectory through a high-dimensional mental space; the neural activation patterns flow back and forth to produce nonlinear, self-organized, emergent properties -- like a biological organism."


In his study, 42 students listened to instructions to click on pictures of different objects on a computer screen. When the students heard a word, such as "candle," and were presented with two pictures whose names did not sound alike, such as a candle and a jacket, the trajectories of their mouse movements were quite straight and directly to the candle. But when the students heard "candle" and were presented with two pictures with similarly sounding names, such as candle and candy, they were slower to click on the correct object, and their mouse trajectories were much more curved. Spivey said that the listeners started processing what they heard even before the entire word was spoken.

"When there was ambiguity, the participants briefly didn’t know which picture was correct and so for several dozen milliseconds, they were in multiple states at once. They didn’t move all the way to one picture and then correct their movement if they realized they were wrong, but instead they traveled through an intermediate gray area," explained Spivey. "The degree of curvature of the trajectory shows how much the other object is competing for their interpretation; the curve shows continuous competition. They sort of partially heard the word both ways, and their resolution of the ambiguity was gradual rather than discrete; it’s a dynamical system."

The computer metaphor describes cognition as being in a particular discrete state, for example, "on or off" or in values of either zero or one, and in a static state until moving on. If there was ambiguity, the model assumed that the mind jumps the gun to one state or the other, and if it realizes it is wrong, it then makes a correction.

"In thinking of cognition as working as a biological organism does, on the other hand, you do not have to be in one state or another like a computer, but can have values in between -- you can be partially in one state and another, and then eventually gravitate to a unique interpretation, as in finally recognizing a spoken word," Spivey said.

Whereas the older models of language processing theorized that neural systems process words in a series of discrete stages, the alternative model suggests that sensory input is processed continuously so that even partial linguistic input can start "the dynamic competition between simultaneously active representations."

Spivey’s co-authors are Marc Grosjean of the University of Dortmund, Germany, and Günther Knoblich of Rutgers University.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>