Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cornell study suggests that mental processing is continuous, not like a computer

28.06.2005


The theory that the mind works like a computer, in a series of distinct stages, was an important steppingstone in cognitive science, but it has outlived its usefulness, concludes a new Cornell University study. Instead, the mind should be thought of more as working the way biological organisms do: as a dynamic continuum, cascading through shades of grey.



In a new study published online this week in Proceedings of the National Academy of Sciences (June 27-July 1), Michael Spivey, a psycholinguist and associate professor of psychology at Cornell, tracked the mouse movements of undergraduate students while working at a computer. The findings provide compelling evidence that language comprehension is a continuous process.

"For decades, the cognitive and neural sciences have treated mental processes as though they involved passing discrete packets of information in a strictly feed-forward fashion from one cognitive module to the next or in a string of individuated binary symbols -- like a digital computer," said Spivey. "More recently, however, a growing number of studies, such as ours, support dynamical-systems approaches to the mind. In this model, perception and cognition are mathematically described as a continuous trajectory through a high-dimensional mental space; the neural activation patterns flow back and forth to produce nonlinear, self-organized, emergent properties -- like a biological organism."


In his study, 42 students listened to instructions to click on pictures of different objects on a computer screen. When the students heard a word, such as "candle," and were presented with two pictures whose names did not sound alike, such as a candle and a jacket, the trajectories of their mouse movements were quite straight and directly to the candle. But when the students heard "candle" and were presented with two pictures with similarly sounding names, such as candle and candy, they were slower to click on the correct object, and their mouse trajectories were much more curved. Spivey said that the listeners started processing what they heard even before the entire word was spoken.

"When there was ambiguity, the participants briefly didn’t know which picture was correct and so for several dozen milliseconds, they were in multiple states at once. They didn’t move all the way to one picture and then correct their movement if they realized they were wrong, but instead they traveled through an intermediate gray area," explained Spivey. "The degree of curvature of the trajectory shows how much the other object is competing for their interpretation; the curve shows continuous competition. They sort of partially heard the word both ways, and their resolution of the ambiguity was gradual rather than discrete; it’s a dynamical system."

The computer metaphor describes cognition as being in a particular discrete state, for example, "on or off" or in values of either zero or one, and in a static state until moving on. If there was ambiguity, the model assumed that the mind jumps the gun to one state or the other, and if it realizes it is wrong, it then makes a correction.

"In thinking of cognition as working as a biological organism does, on the other hand, you do not have to be in one state or another like a computer, but can have values in between -- you can be partially in one state and another, and then eventually gravitate to a unique interpretation, as in finally recognizing a spoken word," Spivey said.

Whereas the older models of language processing theorized that neural systems process words in a series of discrete stages, the alternative model suggests that sensory input is processed continuously so that even partial linguistic input can start "the dynamic competition between simultaneously active representations."

Spivey’s co-authors are Marc Grosjean of the University of Dortmund, Germany, and Günther Knoblich of Rutgers University.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>