Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cornell study suggests that mental processing is continuous, not like a computer

28.06.2005


The theory that the mind works like a computer, in a series of distinct stages, was an important steppingstone in cognitive science, but it has outlived its usefulness, concludes a new Cornell University study. Instead, the mind should be thought of more as working the way biological organisms do: as a dynamic continuum, cascading through shades of grey.



In a new study published online this week in Proceedings of the National Academy of Sciences (June 27-July 1), Michael Spivey, a psycholinguist and associate professor of psychology at Cornell, tracked the mouse movements of undergraduate students while working at a computer. The findings provide compelling evidence that language comprehension is a continuous process.

"For decades, the cognitive and neural sciences have treated mental processes as though they involved passing discrete packets of information in a strictly feed-forward fashion from one cognitive module to the next or in a string of individuated binary symbols -- like a digital computer," said Spivey. "More recently, however, a growing number of studies, such as ours, support dynamical-systems approaches to the mind. In this model, perception and cognition are mathematically described as a continuous trajectory through a high-dimensional mental space; the neural activation patterns flow back and forth to produce nonlinear, self-organized, emergent properties -- like a biological organism."


In his study, 42 students listened to instructions to click on pictures of different objects on a computer screen. When the students heard a word, such as "candle," and were presented with two pictures whose names did not sound alike, such as a candle and a jacket, the trajectories of their mouse movements were quite straight and directly to the candle. But when the students heard "candle" and were presented with two pictures with similarly sounding names, such as candle and candy, they were slower to click on the correct object, and their mouse trajectories were much more curved. Spivey said that the listeners started processing what they heard even before the entire word was spoken.

"When there was ambiguity, the participants briefly didn’t know which picture was correct and so for several dozen milliseconds, they were in multiple states at once. They didn’t move all the way to one picture and then correct their movement if they realized they were wrong, but instead they traveled through an intermediate gray area," explained Spivey. "The degree of curvature of the trajectory shows how much the other object is competing for their interpretation; the curve shows continuous competition. They sort of partially heard the word both ways, and their resolution of the ambiguity was gradual rather than discrete; it’s a dynamical system."

The computer metaphor describes cognition as being in a particular discrete state, for example, "on or off" or in values of either zero or one, and in a static state until moving on. If there was ambiguity, the model assumed that the mind jumps the gun to one state or the other, and if it realizes it is wrong, it then makes a correction.

"In thinking of cognition as working as a biological organism does, on the other hand, you do not have to be in one state or another like a computer, but can have values in between -- you can be partially in one state and another, and then eventually gravitate to a unique interpretation, as in finally recognizing a spoken word," Spivey said.

Whereas the older models of language processing theorized that neural systems process words in a series of discrete stages, the alternative model suggests that sensory input is processed continuously so that even partial linguistic input can start "the dynamic competition between simultaneously active representations."

Spivey’s co-authors are Marc Grosjean of the University of Dortmund, Germany, and Günther Knoblich of Rutgers University.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>