Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Building Strength in Computer Science: A new study from AAAS


Employment in computer- and internet-related fields is notoriously volatile, but recent developments have raised concerns about the long-term future: The number of undergraduates seeking computer science degrees is down sharply since 2000. The number of women seeking such degrees has plunged. And few minority students are winning advanced degrees in the field.

Now a new study from AAAS has concluded that recruitment of "non-traditional" students into computer science studies and jobs will be critical in keeping the U.S. workforce strong. And yet, the report says, this growing pool of students often is overlooked and underserved by higher education, government and industry.

Traditional students fit a familiar mold: They start college at 18 or 19, and they leave four or five years later with a bachelor’s degree. Others, however, defy the stereotype: They’re older. They may have children. While working full-time, they’re seeking new skills or advancement. And many are women and minorities.

"Our workplaces are becoming more technologically dependent, not less so," said report co-author Shirley Malcom, AAAS director of Education and Human Resources. "If you accept that for economic and national security reasons we need people with skills in these areas, then how can you be sanguine with the idea that we’re not getting the people we need?"

With funding from the National Science Foundation, the authors conducted surveys, visited colleges and universities and interviewed students, instructors and employers from 2000 to 2004. Their report is entitled "Preparing Women and Minorities for the IT Workforce: The Role of Nontraditional Educational Pathways."

Tanya Gunn, today a high-ranking computer technology executive, embodies the trend.

Gunn studied psychology at Howard University for three years, but then, driven by a desire for financial independence, she left school and went to work as a secretary at the American Chemical Society in Washington, D.C. She showed a flair for computers; though she won promotions, she knew that she needed more training and a degree to make the most of her potential.

By that time she was married and had two daughters. And so, in the early 1980s, she began taking night classes at the University of Maryland, University College.

She was older, she’s black, she’s a woman—and in those early years, she wasn’t always welcome in the world of computer geeks. "There weren’t that many women majoring in computer sciences," Gunn said in an interview. "I kind of struggled because a lot of the guys in the class, including the instructors, really were stand-offish. It was like I had the plague, and they didn’t know what I was doing there. ’She’s a girl—let’s don’t talk to her. This is a boys’ club’."

But semester by semester, she won respect; in time, fellow students and faculty members came to see her as a leader.

After 17 years of part-time study, Gunn graduated in 2001. Today, after a series of promotions, she is manager of change and problem management at the American Chemical Society, overseeing centralized communication and tracking of IT upgrades to promote better understanding of the changes across the organization.

The new report found such themes common among non-traditional students. Even now, the authors report, traditional four-year schools often are not structured to meet their needs. Instructors are not always sensitive. And the financial aid system gives advantages to traditional students.

One result: For-profit schools such as Strayer University and DeVry Institute of Technology were the top U.S. producers of computer science bachelor’s degrees in 2001.

Another result: Few women and minorities are getting advanced degrees in computer science. In remarks at a Capitol Hill briefing in May, Malcom said that of 866 computer science doctorates issued by U.S. universities in 2003, 20.2 percent went to women. She said 17 such degrees went to African Americans; three to Mexican Americans, two to American Indians; and two to Puerto Ricans.

Though the report was begun during the dot-com boom, its findings remain important for the future, the authors say.

Eleanor Babco, executive director of the Commission on Professionals in Science and Technology (CPST), said a recent study by the Higher Education Research Institute at the University of California-Los Angeles showed the percentage of incoming undergraduates who planned to major in computer science declined over 60 percent between 2000 and 2004.

"Alarmingly," she added, "the proportion of women who thought that they might major in computer science has fallen to levels unseen since the early 1970s…. It is difficult to see how computer sciences can match expected future demand for IT workers without raising women’s participation at the undergraduate level.

The report recommends more effort to accommodate non-traditional students at traditional schools; more faculty diversity; more public and private investment in schools that serve non-traditional students; and expanded financial aid to encourage internet technology students to study part-time in areas of "national need."

"Preparing Women and Minorities for the IT Workforce" was written by Malcom; Babco; Albert H. Teich, AAAS director of Science and Policy; Jolene Kay Jesse, formerly a senior research associate at AAAS who is now with the U.S. National Science Foundation; Lara Campbell, a senior program associate at AAAS; and Nathan E. Bell, a CPST research associate.

Earl Lane | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>