Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism that may enable stem cell-based treatment for eye disorders

27.06.2005


UCI study shows how newly identified signaling protein helps control retinal development



In discovering a protein that helps organize the development of the retina, UC Irvine researchers have found a new molecular mechanism that may allow for stem cell-based therapies to treat eye disorders such as retinal degeneration.

The finding also reveals how the retina’s own stem cells can be directed to aid the growth of new cells to replace diseased or dying ones in the eye. Study results appear in the June 24 issue of the journal Science.


Anne L. Calof in the Department of Anatomy and Neurobiology and her UCI colleagues have identified how a protein called GDF11 controls a key component of retinal-cell differentiation during development, which makes GDDF11 an attractive therapeutic target.

"By manipulating the ability of this protein to control cell development, there is the potential for therapeutics to harness the power of the stem cells that already exist in the retina to replace any retinal cells that have been lost or injured," Calof said. "If so, we thereby may be able to cure visual disorders that result from loss of certain retinal cell types."

During the process of embryonic development, groups of neural precursor cells, which are formed from stem cells, are given brief periods of time to differentiate into their specific tissue forms, a process that is tightly regulated by signaling proteins.

In tests on developing mice, the Calof group observed that the GDF11 protein precisely controls the "window of opportunity" in which retinal precursor cells differentiate into the cells that give rise to the optic nerve. This regulation is important, Calof said, because it assures proper development of the entire retina, a nerve cell layer that lines the back of the eye, senses light and creates the electrical impulses that travel through the optic nerve to the brain.

GDF11 is part of the superfamily of TGF-beta proteins, which are widely studied for their role both in human development and in diseases like cancer. Because the structure and properties of these proteins are well known, GDF11 is an especially attractive target for potential drug treatments.

Therapies based on this protein become possible, Calof said, because the retina contains its own stem cells, which among other things, generate the photoreceptors that allow us to see color. However, harvesting these cells for therapeutic purposes may not be feasible. While researchers have created ways to extract adult stem cells from the body, the process is difficult and rarely successful.

Rather than removing adult stem cells and reintroducing cultured ones into the eye, Calof said, a drug therapy based on the GDF11 protein may be able to harness the power of these endogenous stem cells by directing the differentiation of these cells into specific retinal cell types.

"The ultimate goal is to control how GDF11 and related proteins regulate the window of opportunity for neural cell growth," Calof said. "If we or other researchers can accomplish this, we will come one step closer to understanding how to manipulate neural stem cells for therapeutic good."

The research was supported by the National Institutes of Health and the March of Dimes Birth Defects Foundation. Joon Kim, Hsiao-Huei Wu and Arthur Lander of UCI, along with Karen Lyons of UCLA and Martin M. Matzuk of Baylor College of Medicine, participated in the study. UCI has filed a patent for use of GDF11 and related proteins and antagonists in treatment of retinal disorders.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http:// www.today.uci.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>