Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism that may enable stem cell-based treatment for eye disorders

27.06.2005


UCI study shows how newly identified signaling protein helps control retinal development



In discovering a protein that helps organize the development of the retina, UC Irvine researchers have found a new molecular mechanism that may allow for stem cell-based therapies to treat eye disorders such as retinal degeneration.

The finding also reveals how the retina’s own stem cells can be directed to aid the growth of new cells to replace diseased or dying ones in the eye. Study results appear in the June 24 issue of the journal Science.


Anne L. Calof in the Department of Anatomy and Neurobiology and her UCI colleagues have identified how a protein called GDF11 controls a key component of retinal-cell differentiation during development, which makes GDDF11 an attractive therapeutic target.

"By manipulating the ability of this protein to control cell development, there is the potential for therapeutics to harness the power of the stem cells that already exist in the retina to replace any retinal cells that have been lost or injured," Calof said. "If so, we thereby may be able to cure visual disorders that result from loss of certain retinal cell types."

During the process of embryonic development, groups of neural precursor cells, which are formed from stem cells, are given brief periods of time to differentiate into their specific tissue forms, a process that is tightly regulated by signaling proteins.

In tests on developing mice, the Calof group observed that the GDF11 protein precisely controls the "window of opportunity" in which retinal precursor cells differentiate into the cells that give rise to the optic nerve. This regulation is important, Calof said, because it assures proper development of the entire retina, a nerve cell layer that lines the back of the eye, senses light and creates the electrical impulses that travel through the optic nerve to the brain.

GDF11 is part of the superfamily of TGF-beta proteins, which are widely studied for their role both in human development and in diseases like cancer. Because the structure and properties of these proteins are well known, GDF11 is an especially attractive target for potential drug treatments.

Therapies based on this protein become possible, Calof said, because the retina contains its own stem cells, which among other things, generate the photoreceptors that allow us to see color. However, harvesting these cells for therapeutic purposes may not be feasible. While researchers have created ways to extract adult stem cells from the body, the process is difficult and rarely successful.

Rather than removing adult stem cells and reintroducing cultured ones into the eye, Calof said, a drug therapy based on the GDF11 protein may be able to harness the power of these endogenous stem cells by directing the differentiation of these cells into specific retinal cell types.

"The ultimate goal is to control how GDF11 and related proteins regulate the window of opportunity for neural cell growth," Calof said. "If we or other researchers can accomplish this, we will come one step closer to understanding how to manipulate neural stem cells for therapeutic good."

The research was supported by the National Institutes of Health and the March of Dimes Birth Defects Foundation. Joon Kim, Hsiao-Huei Wu and Arthur Lander of UCI, along with Karen Lyons of UCLA and Martin M. Matzuk of Baylor College of Medicine, participated in the study. UCI has filed a patent for use of GDF11 and related proteins and antagonists in treatment of retinal disorders.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http:// www.today.uci.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>