Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme family plays role in Alzheimer’s

21.06.2005


The route to a treatment for Alzheimer’s disease may have become more straightforward with the discovery that a key enzyme known to have a major role in this disease is in fact part of a family of enzymes. Only some family members play a role in the progression of this brain-wasting illness, new research at the University of Toronto has found.



"It was previously thought that an enzyme called gamma-secretase contributed to the development of protein deposits in the Alzheimer’s brain. This study shows that this enzyme is more accurately described as a family of enzymes, each with its own specialization," explains Professor David Westaway of U of T’s Centre for Research in Neurodegenerative Diseases and senior author of a paper in the June 21 issue of the Proceedings of the National Academy of Sciences.

Gamma-secretase enzymes generate toxic molecules called amyloid-beta peptides. These peptides produce deposits called amyloid plaques, the brain lesions that are a defining feature of Alzheimer’s disease. If scientists can stop these enzymes from working, they will be able to stop their resulting toxic molecules from forming in the brain. Complicating the situation is the fact that the gamma-secretase enzyme was also thought to be involved in healthy functioning of other tissues; therefore, therapies would have to inhibit the negative effects while maintaining the normal functioning of other cells.


Westaway and his research colleagues used genetically-engineered mice to show that toxic activity of gamma-secretase could be separated from its other benign activities. "This finding provides hope that Alzheimer’s treatments can be developed that reduces toxic activity of certain gamma-secretases while still maintaining the beneficial activities of other family members," says Peter Mastrangelo, a research associate in Westaway’s lab and first author of the paper.

Janet Wong | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>