Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme family plays role in Alzheimer’s

21.06.2005


The route to a treatment for Alzheimer’s disease may have become more straightforward with the discovery that a key enzyme known to have a major role in this disease is in fact part of a family of enzymes. Only some family members play a role in the progression of this brain-wasting illness, new research at the University of Toronto has found.



"It was previously thought that an enzyme called gamma-secretase contributed to the development of protein deposits in the Alzheimer’s brain. This study shows that this enzyme is more accurately described as a family of enzymes, each with its own specialization," explains Professor David Westaway of U of T’s Centre for Research in Neurodegenerative Diseases and senior author of a paper in the June 21 issue of the Proceedings of the National Academy of Sciences.

Gamma-secretase enzymes generate toxic molecules called amyloid-beta peptides. These peptides produce deposits called amyloid plaques, the brain lesions that are a defining feature of Alzheimer’s disease. If scientists can stop these enzymes from working, they will be able to stop their resulting toxic molecules from forming in the brain. Complicating the situation is the fact that the gamma-secretase enzyme was also thought to be involved in healthy functioning of other tissues; therefore, therapies would have to inhibit the negative effects while maintaining the normal functioning of other cells.


Westaway and his research colleagues used genetically-engineered mice to show that toxic activity of gamma-secretase could be separated from its other benign activities. "This finding provides hope that Alzheimer’s treatments can be developed that reduces toxic activity of certain gamma-secretases while still maintaining the beneficial activities of other family members," says Peter Mastrangelo, a research associate in Westaway’s lab and first author of the paper.

Janet Wong | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>