Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on why diabetes drug causes edema

20.06.2005


Also helps understand role of kidneys in hypertension

In related discoveries with far-reaching implications for treating diabetes and understanding hypertension, University of Utah researchers have learned why thiazolidinediones (TZDs), a major anti-diabetes drug, cause edema and also have found a new pathway critical to fluid metabolism. Identification of this pathway may help understand fundamental mechanisms of blood pressure control.

Using knockout-gene technology, the U of U School of Medicine researchers found that when TZD is activating a nuclear receptor, the peroxisome proliferator-activated receptor gamma, in the collecting duct in the kidney, it serves as a mechanism for fluid retention, or edema. The researchers suggest that the distal nephron, for example the collecting duct, is crucial for regulation of sodium balance and blood pressure. The research is published this week in the Proceedings of the National Academy of Sciences online.



The discoveries may point the way to developing different drugs to treat Type II diabetes and open an entirely new area in the study of hypertension, according to Tianxin Yang, M.D., Ph.D., the two-year study’s principal investigator, associate professor of internal medicine at the U medical school, and staff physician at the George E. Wahler Veterans Affairs Medical Center in Salt Lake City.

An estimated 18 million Americans suffer from diabetes. TZD compounds have been shown to be highly effective in lowering blood glucose and lipid levels and in controlling blood pressure.

"It’s almost a perfect drug for diabetes," Yang said.

But many diabetics who use TZD eventually have to discontinue the drug because it causes edema. About 1 percent of people who take TZD get pulmonary edema and chronic heart failure, both being potentially life-threatening conditions.

TZD works by activating PPAR-gamma, a receptor that helps sensitize the body to insulin. PPAR is found in muscle, fat, kidney, and heart and controls fatty acid and lipid metabolism. In the kidney, PPAR is found in the collecting duct, a critical site for the control of fluid metabolism.

To test the role of PPAR in edema, Yang created mice that specifically lacked PPAR-gamma in the collecting duct. He then administered TZD to these mice, as well as to a control group that didn’t lack PPAR-gamma.

The mice not lacking PPAR-gamma showed about a 10 percent average increase in body weight because of fluid retention. The blood plasma volume of these mice increased by one-third, Yang said. But the mice bred without PPAR-gamma experienced no increase in body weight in response to the drug, according to Yang.

"This tells us that the body weight gain is regulated by PPAR-gamma in the collecting duct," he said. "We also found this drug decreased the sodium excretion in urine, so this could explain the fluid retention."

The mice without PPAR in the collecting ducts incurred no changes in sodium reabsorption, while those with PPAR excreted less sodium through urination. Yang said that the distal nephron, which is usually subject to hormone regulation in the kidney, serves as a key pathway for keeping an accurate amount of sodium in the body.

Hypertension affects one in four U.S. adults and long had been considered a cardiovascular disease. But research now also focuses on the kidneys and the role of the distal nephron in retaining sodium opens a new area for study, he said.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>