Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on why diabetes drug causes edema

20.06.2005


Also helps understand role of kidneys in hypertension

In related discoveries with far-reaching implications for treating diabetes and understanding hypertension, University of Utah researchers have learned why thiazolidinediones (TZDs), a major anti-diabetes drug, cause edema and also have found a new pathway critical to fluid metabolism. Identification of this pathway may help understand fundamental mechanisms of blood pressure control.

Using knockout-gene technology, the U of U School of Medicine researchers found that when TZD is activating a nuclear receptor, the peroxisome proliferator-activated receptor gamma, in the collecting duct in the kidney, it serves as a mechanism for fluid retention, or edema. The researchers suggest that the distal nephron, for example the collecting duct, is crucial for regulation of sodium balance and blood pressure. The research is published this week in the Proceedings of the National Academy of Sciences online.



The discoveries may point the way to developing different drugs to treat Type II diabetes and open an entirely new area in the study of hypertension, according to Tianxin Yang, M.D., Ph.D., the two-year study’s principal investigator, associate professor of internal medicine at the U medical school, and staff physician at the George E. Wahler Veterans Affairs Medical Center in Salt Lake City.

An estimated 18 million Americans suffer from diabetes. TZD compounds have been shown to be highly effective in lowering blood glucose and lipid levels and in controlling blood pressure.

"It’s almost a perfect drug for diabetes," Yang said.

But many diabetics who use TZD eventually have to discontinue the drug because it causes edema. About 1 percent of people who take TZD get pulmonary edema and chronic heart failure, both being potentially life-threatening conditions.

TZD works by activating PPAR-gamma, a receptor that helps sensitize the body to insulin. PPAR is found in muscle, fat, kidney, and heart and controls fatty acid and lipid metabolism. In the kidney, PPAR is found in the collecting duct, a critical site for the control of fluid metabolism.

To test the role of PPAR in edema, Yang created mice that specifically lacked PPAR-gamma in the collecting duct. He then administered TZD to these mice, as well as to a control group that didn’t lack PPAR-gamma.

The mice not lacking PPAR-gamma showed about a 10 percent average increase in body weight because of fluid retention. The blood plasma volume of these mice increased by one-third, Yang said. But the mice bred without PPAR-gamma experienced no increase in body weight in response to the drug, according to Yang.

"This tells us that the body weight gain is regulated by PPAR-gamma in the collecting duct," he said. "We also found this drug decreased the sodium excretion in urine, so this could explain the fluid retention."

The mice without PPAR in the collecting ducts incurred no changes in sodium reabsorption, while those with PPAR excreted less sodium through urination. Yang said that the distal nephron, which is usually subject to hormone regulation in the kidney, serves as a key pathway for keeping an accurate amount of sodium in the body.

Hypertension affects one in four U.S. adults and long had been considered a cardiovascular disease. But research now also focuses on the kidneys and the role of the distal nephron in retaining sodium opens a new area for study, he said.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>