Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on why diabetes drug causes edema

20.06.2005


Also helps understand role of kidneys in hypertension

In related discoveries with far-reaching implications for treating diabetes and understanding hypertension, University of Utah researchers have learned why thiazolidinediones (TZDs), a major anti-diabetes drug, cause edema and also have found a new pathway critical to fluid metabolism. Identification of this pathway may help understand fundamental mechanisms of blood pressure control.

Using knockout-gene technology, the U of U School of Medicine researchers found that when TZD is activating a nuclear receptor, the peroxisome proliferator-activated receptor gamma, in the collecting duct in the kidney, it serves as a mechanism for fluid retention, or edema. The researchers suggest that the distal nephron, for example the collecting duct, is crucial for regulation of sodium balance and blood pressure. The research is published this week in the Proceedings of the National Academy of Sciences online.



The discoveries may point the way to developing different drugs to treat Type II diabetes and open an entirely new area in the study of hypertension, according to Tianxin Yang, M.D., Ph.D., the two-year study’s principal investigator, associate professor of internal medicine at the U medical school, and staff physician at the George E. Wahler Veterans Affairs Medical Center in Salt Lake City.

An estimated 18 million Americans suffer from diabetes. TZD compounds have been shown to be highly effective in lowering blood glucose and lipid levels and in controlling blood pressure.

"It’s almost a perfect drug for diabetes," Yang said.

But many diabetics who use TZD eventually have to discontinue the drug because it causes edema. About 1 percent of people who take TZD get pulmonary edema and chronic heart failure, both being potentially life-threatening conditions.

TZD works by activating PPAR-gamma, a receptor that helps sensitize the body to insulin. PPAR is found in muscle, fat, kidney, and heart and controls fatty acid and lipid metabolism. In the kidney, PPAR is found in the collecting duct, a critical site for the control of fluid metabolism.

To test the role of PPAR in edema, Yang created mice that specifically lacked PPAR-gamma in the collecting duct. He then administered TZD to these mice, as well as to a control group that didn’t lack PPAR-gamma.

The mice not lacking PPAR-gamma showed about a 10 percent average increase in body weight because of fluid retention. The blood plasma volume of these mice increased by one-third, Yang said. But the mice bred without PPAR-gamma experienced no increase in body weight in response to the drug, according to Yang.

"This tells us that the body weight gain is regulated by PPAR-gamma in the collecting duct," he said. "We also found this drug decreased the sodium excretion in urine, so this could explain the fluid retention."

The mice without PPAR in the collecting ducts incurred no changes in sodium reabsorption, while those with PPAR excreted less sodium through urination. Yang said that the distal nephron, which is usually subject to hormone regulation in the kidney, serves as a key pathway for keeping an accurate amount of sodium in the body.

Hypertension affects one in four U.S. adults and long had been considered a cardiovascular disease. But research now also focuses on the kidneys and the role of the distal nephron in retaining sodium opens a new area for study, he said.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>