Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teen-agers with Type 1 diabetes already developing cardiovascular disease

13.06.2005


USC study shows that boys with diabetes are at particular risk

Youths with type 1 diabetes, especially boys, already show early signs of cardiovascular disease by their teen-age years, according to researchers from the Keck School of Medicine of the University of Southern California and Childrens Hospital Los Angeles.

Teen-age boys with type 1 diabetes showed evidence of greater atherosclerosis, a thickening of the artery walls, than those without diabetes, according to the study. Researchers also noted that boys with diabetes who smoked, inhaled second-hand smoke or had unfavorable levels of blood lipids-such as cholesterol-tended to have even thicker artery walls. The team presented its findings at the American Diabetes Association’s 65th Scientific Sessions.



"This would suggest that aggressive anti-smoking strategies be employed, as well as perhaps a more aggressive approach to treat lipid abnormalities. But this requires further investigation," says study senior author Francine R. Kaufman, M.D., professor of pediatrics at the Keck School and head of the division of endocrinology and metabolism at Childrens Hospital Los Angeles (CHLA). Maria Karantza, M.D., endocrinology fellow at CHLA, presented the data.

Researchers compared 90 teen-age boys and girls with type 1 diabetes to 16 other teens the same age without the disease. In each participant, they looked at the intima-media thickness (IMT) of the common carotid artery-basically, the thickness of the wall of the main neck artery. That thickness can hint at atherosclerosis progression.

Atherosclerosis, an accumulation of cholesterol-containing plaques along the artery walls, can eventually cause heart attack, angina and stroke.

The researchers found that teen-age boys, but not girls, with type 1 diabetes had significantly higher IMT than those without type 1 diabetes. IMT was higher among boys with poor glucose control, exposure to smoke, and higher total cholesterol and apoliprotein B levels. Apoliprotein B (apoB) is a nonfat particle in the blood that helps transport low-density lipoprotein (LDL), the so-called "bad" cholesterol.

In girls, IMT tended to be higher among those with a family history of cardiovascular disease and lower among those with favorable levels of high-density lipoprotein, the so-called "good" cholesterol.

Kaufman noted that researchers also tested for certain markers in the blood that are related to inflammation of the inner artery walls. Researchers believe these markers, such as fibrinogen, may indicate heightened inflammatory processes along the artery walls and more imminent risk of cardiovascular disease. However, researchers found no relationship between levels of these markers and IMT in the teen-agers.

Researchers also are unsure why the teen-age girls with type 1 diabetes fared better on IMT measurements than boys. "Girls appear to have a gender benefit, as do pre-menopausal women without diabetes," Kaufman says. "It is not known how long this gender benefit persists in teens and young adults."

In a separate study, Karantza, Kaufman and their colleagues also looked at the role of the up-and-coming marker called C-reactive protein in assessing cardiovascular disease risk among teen-agers with type 1 diabetes.

The team found that among 74 teens with type 1 diabetes, those who had a C-reactive protein level of 1.0 or above also had unfavorable levels of blood lipids, such as LDL, triglycerides and lipoprotein(a). Known as dyslipidemia, this condition is linked to heart disease risk. The teens also had elevated levels of ApoB.

"C-reactive protein may be a useful marker in youth to detect endothelial inflammation that clusters with dyslipidemia and contributes to increased cardiovascular risk in this disease," Kaufman says.

Richard Stone | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>