Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Junk DNA shapes social behavior

10.06.2005


Yerkes and CBN researchers find variations in genetic code affect social behavior



Why are some people shy while others are outgoing? A study in the current issue of Science demonstrates for the first time that social behavior may be shaped by differences in the length of seemingly non-functional DNA, sometimes referred to as junk DNA. The finding by researchers at the Yerkes National Primate Research Center of Emory University and the Atlanta-based Center for Behavioral Neuroscience (CBN) has implications for understanding human social behavior and disorders, such as autism.

In the study, Yerkes and former CBN graduate student Elizabeth A.D. Hammock, PhD, and Yerkes and CBN researcher Larry J. Young, PhD, also of the Department of Psychiatry and Behavioral Sciences at Emory University’s School of Medicine, examined whether the junk DNA, more formally known as microsatellite DNA, associated with the vasopressin receptor gene affects social behavior in male prairie voles, a rodent species. Previous studies, including Dr. Young’s gene-manipulation study reported in Nature’s June 17, 2004, issue, have shown the vasopressin receptor gene regulates social behaviors in many species.


The researchers bred two groups of prairie voles with short and long versions of the junk DNA. By comparing the behavior of male offspring after they matured, they discovered microsatellite length affects gene expression patterns in the brain. In the prairie voles, males with long microsatellites had higher levels of vasopressin receptors in brain areas involved in social behavior and parental care, particularly the olfactory bulb and lateral septum. These males spent more time investigating social odors and approached strangers more quickly. They also were more likely to form bonds with mates, and they spent more time nurturing their offspring.

"This is the first study to demonstrate a link between microsatellite length, gene expression patterns in the brain and social behavior across several species," said Young. "Because a significant portion of the human genome consists of junk DNA and due to the way microsatellite DNA expands and contracts over time, microsatellites may represent a previously unknown factor in social diversity."

Hammock and Young’s finding extends beyond social diversity in rodents to that in apes and humans. Chimpanzees and bonobos, humans’ closest relatives, have the vasopressin receptor gene, yet only the bonobo, which has been called the most empathetic ape, has a microsatellite similar to that of humans. According to Yerkes researcher Frans de Waal, PhD, "That this specific microsatellite is missing from the chimpanzee’s DNA may mean the last common ancestor of humans and apes was socially more like the bonobo and less like the relatively aggressive and dominance-oriented chimpanzee."

The researchers’ finding also has set a clear course for the next step. They want to build upon previous studies that identified a microsatellite sequence in the human vasopressin receptor that varies in length. "The variability in the microsatellite could account for some of the diversity in human social personality traits," explains Hammock. "For example, it may help explain why some people are naturally gregarious while others are shy." In particular, Young wants his research team to expound upon studies that have identified a link with autism.

Lisa Newbern | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>