Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Junk DNA shapes social behavior

10.06.2005


Yerkes and CBN researchers find variations in genetic code affect social behavior



Why are some people shy while others are outgoing? A study in the current issue of Science demonstrates for the first time that social behavior may be shaped by differences in the length of seemingly non-functional DNA, sometimes referred to as junk DNA. The finding by researchers at the Yerkes National Primate Research Center of Emory University and the Atlanta-based Center for Behavioral Neuroscience (CBN) has implications for understanding human social behavior and disorders, such as autism.

In the study, Yerkes and former CBN graduate student Elizabeth A.D. Hammock, PhD, and Yerkes and CBN researcher Larry J. Young, PhD, also of the Department of Psychiatry and Behavioral Sciences at Emory University’s School of Medicine, examined whether the junk DNA, more formally known as microsatellite DNA, associated with the vasopressin receptor gene affects social behavior in male prairie voles, a rodent species. Previous studies, including Dr. Young’s gene-manipulation study reported in Nature’s June 17, 2004, issue, have shown the vasopressin receptor gene regulates social behaviors in many species.


The researchers bred two groups of prairie voles with short and long versions of the junk DNA. By comparing the behavior of male offspring after they matured, they discovered microsatellite length affects gene expression patterns in the brain. In the prairie voles, males with long microsatellites had higher levels of vasopressin receptors in brain areas involved in social behavior and parental care, particularly the olfactory bulb and lateral septum. These males spent more time investigating social odors and approached strangers more quickly. They also were more likely to form bonds with mates, and they spent more time nurturing their offspring.

"This is the first study to demonstrate a link between microsatellite length, gene expression patterns in the brain and social behavior across several species," said Young. "Because a significant portion of the human genome consists of junk DNA and due to the way microsatellite DNA expands and contracts over time, microsatellites may represent a previously unknown factor in social diversity."

Hammock and Young’s finding extends beyond social diversity in rodents to that in apes and humans. Chimpanzees and bonobos, humans’ closest relatives, have the vasopressin receptor gene, yet only the bonobo, which has been called the most empathetic ape, has a microsatellite similar to that of humans. According to Yerkes researcher Frans de Waal, PhD, "That this specific microsatellite is missing from the chimpanzee’s DNA may mean the last common ancestor of humans and apes was socially more like the bonobo and less like the relatively aggressive and dominance-oriented chimpanzee."

The researchers’ finding also has set a clear course for the next step. They want to build upon previous studies that identified a microsatellite sequence in the human vasopressin receptor that varies in length. "The variability in the microsatellite could account for some of the diversity in human social personality traits," explains Hammock. "For example, it may help explain why some people are naturally gregarious while others are shy." In particular, Young wants his research team to expound upon studies that have identified a link with autism.

Lisa Newbern | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>