Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago study overturns conventional theory in evolution

07.06.2005


New data suggest that the accumulation of genetic changes is not solely determined by natural selection. A study by University of Chicago researchers contradicts conventional theory by showing that the percentage of mutations accepted in evolution is also strongly swayed by the speed at which new mutations arrive at a gene: the faster the speed of new mutations, the greater the percentage of those mutations accepted.

"We’ve discovered a striking phenomenon that challenges a paradigm of molecular evolution that has been around for several decades," said lead author Bruce Lahn, Ph.D., assistant professor of genetics at the University of Chicago and Howard Hughes Medical Institute investigator. "As such, it may cause a significant shift in the field."

The researchers report their findings in the July 2005, issue of the journal Trends in Genetics, available early online June 7. Other authors are Gerald Wyckoff, Ph.D., previously a postdoctoral fellow in Lahn’s lab and now an assistant professor at the University of Missouri-Kansas City, and Christine Malcom and Eric Vallender, both graduate students in Lahn’s lab.



For more than three decades, molecular evolutionists have thought that no matter how many genetic mutations show up on a specific gene, whether or not those mutations become fixed in the species is determined primarily by natural selection. The new study shows that the speed at which these new mutations arrive also affects whether the mutations become fixed.

Lahn’s team looked at nearly 6,000 genes in their study. For each gene, they compared sequences between two mammalian species. This enabled them to measure the mutation rate of the gene – specifically, the rate of those mutations that do not affect the protein’s structure, called synonymous mutation (Ks). These mutations are functionally neutral, which means natural selection is not a factor in whether they are accepted during evolution.

Lahn’s team also looked at the mutation rate of nonsynonymous changes (Ka) – the rate of those mutations that do affect protein structure. These mutations are typically subject to natural selection. A nonsynonymous mutation will get accepted into or bounced out of the population based upon how the change alters protein function.

The researchers then studied the Ka/Ks ratio. A low Ka/Ks ratio indicates strong selection; conversely, a high ratio, weak selection. Some genes have a ratio of 0, which means protein changes are not accepted. It is, in a sense, "perfect."

For a pseudogene – a stretch of DNA sequence that resembles a gene but has no function – its Ka/Ks ratio is approximately 1.0, which means that synonymous and nonsynonymous mutations are accepted at the same rate since the gene is functionally irrelevant.

For a gene that is highly functional and important for the organism, its Ka/Ks ratio is typically low. For example, if a gene has a Ka/Ks ratio of 0.1, it means that it’s highly selective and is only accepting 10 percent of the nonsynonymous mutations.

Regardless of the rate of new mutations at a particular gene, scientists have always presumed the percentage of nonsynonymous mutations accepted during evolution remains constant.

"This theory has been the workhorse of molecular evolution," Lahn said. "Thousands of scientific papers have been published based directly or indirectly on this notion."

The new data show that if more mutations show up at a gene, that gene tends to accept a higher percentage of those mutations.

"A gene under strong mutational pressure succumbs to that pressure," Lahn said. "For genes that have a high mutation rate, somehow selection appears to become less stringent."

Lahn cannot explain the mechanism of his findings and expects many will question this novel finding. "It’s too radical," he said. "People just don’t want to believe it, but the data are there."

"Lahn and his associates have found a most striking result, one that is totally unexpected," said geneticist James Crow, professor emeritus of genetics and zoology at the University of Wisconsin-Madison. "If this result is indeed confirmed it would cast doubt on use of this ratio [Ka/Ks] as an indicator of selection."

Sudhir Kumar, an associate professor of molecular evolution at Arizona State University, agreed. "It goes against strict theory, but evolutionary biologists know that nothing’s clean cut. There’s always distortion because we’re looking at longtime history.

"The novelty of this work is that he [Lahn] used a large amount of data," Kumar said. "It’s a perfect example of the power of the genome project."

"I hope that further work will provide an explanation of what now is a major puzzle," Crow added.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>