Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Chicago study overturns conventional theory in evolution


New data suggest that the accumulation of genetic changes is not solely determined by natural selection. A study by University of Chicago researchers contradicts conventional theory by showing that the percentage of mutations accepted in evolution is also strongly swayed by the speed at which new mutations arrive at a gene: the faster the speed of new mutations, the greater the percentage of those mutations accepted.

"We’ve discovered a striking phenomenon that challenges a paradigm of molecular evolution that has been around for several decades," said lead author Bruce Lahn, Ph.D., assistant professor of genetics at the University of Chicago and Howard Hughes Medical Institute investigator. "As such, it may cause a significant shift in the field."

The researchers report their findings in the July 2005, issue of the journal Trends in Genetics, available early online June 7. Other authors are Gerald Wyckoff, Ph.D., previously a postdoctoral fellow in Lahn’s lab and now an assistant professor at the University of Missouri-Kansas City, and Christine Malcom and Eric Vallender, both graduate students in Lahn’s lab.

For more than three decades, molecular evolutionists have thought that no matter how many genetic mutations show up on a specific gene, whether or not those mutations become fixed in the species is determined primarily by natural selection. The new study shows that the speed at which these new mutations arrive also affects whether the mutations become fixed.

Lahn’s team looked at nearly 6,000 genes in their study. For each gene, they compared sequences between two mammalian species. This enabled them to measure the mutation rate of the gene – specifically, the rate of those mutations that do not affect the protein’s structure, called synonymous mutation (Ks). These mutations are functionally neutral, which means natural selection is not a factor in whether they are accepted during evolution.

Lahn’s team also looked at the mutation rate of nonsynonymous changes (Ka) – the rate of those mutations that do affect protein structure. These mutations are typically subject to natural selection. A nonsynonymous mutation will get accepted into or bounced out of the population based upon how the change alters protein function.

The researchers then studied the Ka/Ks ratio. A low Ka/Ks ratio indicates strong selection; conversely, a high ratio, weak selection. Some genes have a ratio of 0, which means protein changes are not accepted. It is, in a sense, "perfect."

For a pseudogene – a stretch of DNA sequence that resembles a gene but has no function – its Ka/Ks ratio is approximately 1.0, which means that synonymous and nonsynonymous mutations are accepted at the same rate since the gene is functionally irrelevant.

For a gene that is highly functional and important for the organism, its Ka/Ks ratio is typically low. For example, if a gene has a Ka/Ks ratio of 0.1, it means that it’s highly selective and is only accepting 10 percent of the nonsynonymous mutations.

Regardless of the rate of new mutations at a particular gene, scientists have always presumed the percentage of nonsynonymous mutations accepted during evolution remains constant.

"This theory has been the workhorse of molecular evolution," Lahn said. "Thousands of scientific papers have been published based directly or indirectly on this notion."

The new data show that if more mutations show up at a gene, that gene tends to accept a higher percentage of those mutations.

"A gene under strong mutational pressure succumbs to that pressure," Lahn said. "For genes that have a high mutation rate, somehow selection appears to become less stringent."

Lahn cannot explain the mechanism of his findings and expects many will question this novel finding. "It’s too radical," he said. "People just don’t want to believe it, but the data are there."

"Lahn and his associates have found a most striking result, one that is totally unexpected," said geneticist James Crow, professor emeritus of genetics and zoology at the University of Wisconsin-Madison. "If this result is indeed confirmed it would cast doubt on use of this ratio [Ka/Ks] as an indicator of selection."

Sudhir Kumar, an associate professor of molecular evolution at Arizona State University, agreed. "It goes against strict theory, but evolutionary biologists know that nothing’s clean cut. There’s always distortion because we’re looking at longtime history.

"The novelty of this work is that he [Lahn] used a large amount of data," Kumar said. "It’s a perfect example of the power of the genome project."

"I hope that further work will provide an explanation of what now is a major puzzle," Crow added.

Catherine Gianaro | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>