Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Opiate cocktail may spare cells from morphine’s dark side


Although morphine is well known as a highly effective analgesic, its clinical utility is severely limited by the development of drug tolerance, the requirement for increasing doses to maintain analgesic effect, and the development of physical dependence. In the June 7 issue of Current Biology, researchers report a new study showing that the administration of a drug cocktail containing morphine along with small doses of two versions of methadone, a related opioid drug, significantly reduced both tolerance and dependence in test animals.

The work is reported by Li He and Jennifer Whistler of the Ernest Gallo Clinic and Research Center and the University of California, San Francisco.

The analgesic effects of morphine arise through the interaction of the drug with a specialized protein on the surface of cells, the mu opioid peptide receptor, or "MOP" receptor. MOP receptors are also activated by other opioid drugs and by endogenous opioids, such as endorphins. However, morphine is unique in that unlike other opioids, it does not cause the MOP receptor to be internalized into the cell’s interior after activation. It is thought that the activated receptor’s persistence at the cell surface leads to a compensatory overactivation of a particular signaling pathway in the cell--a signaling imbalance that is a hallmark of opiate tolerance and dependence. This suggests that the promotion of MOP-receptor internalization might prevent such cellular signaling imbalances, and indeed past work from Whistler indicated that mutant versions of the receptor that are more readily internalized were associated with reduced levels of morphine tolerance in mice.

In the new work, the researchers sought a more clinically practical approach to facilitating MOP-receptor internalization in the presence of morphine. Reasoning that because other opioid drugs promote internalization of MOP receptors, and that their presence in combination with morphine may prevent the persistence of activated MOP receptors at the cell surface, the authors developed a drug cocktail containing morphine along with two chemical versions of the opioid methadone, which is tolerated, with limited side effects, at low doses.

The authors indeed found that the combination of morphine with the methadone mixture prevented the activation of cellular signaling pathways associated with morphine tolerance and dependence. They also showed, perhaps most importantly, that whereas rats receiving only morphine develop tolerance to the drug, those rats receiving the morphine/methadone cocktail did not show tolerance. Moreover, past work has not indicated whether the promotion of MOP-receptor internalization could prevent the development of morphine dependence, but in the new study, the authors discovered that rats receiving the morphine/methadone cocktail also experienced reduced morphine dependence.

In light of their findings, the authors propose that an opiate cocktail that combines morphine with small doses of methadone would increase the effectiveness of morphine for the treatment of chronic pain.

Heidi Hardman | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>