Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Plants use dual defense system to fight pathogens

03.06.2005


Researchers have uncovered the link between two biochemical pathways that plants use to defend themselves against pathogens – pathways that scientists have long believed worked independently of each other.



Knowing how these pathways of immunity work may one day help researchers breed plants that can better resist a variety of pathogens, said David Mackey, the study’s lead author and an assistant professor of horticulture and crop science at Ohio State University .

He and his colleagues explain their findings in the current issue of the journal Cell.


The researchers infected Arabidopsis plants with a bacterial strain of Pseudomonas syringae, a bacterium that usually infects tomato crops. Both Arabidopsis, a plant of the mustard family, and P. syringae are models that researchers commonly use to conduct basic plant research.

One of the immune pathways that interested the researchers recognizes what they call pathogen-associated molecular patterns, or PAMPs. The PAMP pathway appears to be a plant’s first line of defense against pathogenic attackers.

“The PAMP path induces a fairly weak immune response,” Mackey said. “Even so, there is growing evidence that suggests these kinds of responses are extremely important in restricting the growth of many pathogens.”

The other pathway uses disease-resistant proteins, or R-proteins, which can detect certain molecules, called effectors, that are secreted by pathogens. This pathway produces a stronger immune response than the PAMP pathway, Mackey said.

He and his colleagues found that the R-protein pathway steps in when PAMP is rendered useless by a pathogen.

Certain types of bacteria, including P. syringae, make a hypodermic needle-like structure that pierces the outermost membrane of a healthy plant or animal cell. The pathogen uses this conduit to send infectious effector proteins into the host cell.

While P. syringae injects about 40 different varieties of effector molecules into a plant cell, the researchers focused on the actions of two of these molecules – AvrRpt2 and AvrRpm1. Both target a protein key to Arabidopsis health­.

The scientists found that both of these effector molecules effectively shut down the PAMP pathway. But the plant’s R-proteins detect this, and come to the rescue.

“The R-proteins detect the insidious activity by which the pathogen’s effectors block the PAMP pathway,” Mackey said. “PAMP defense responses are probably often effective, but they may be blocked by the pathogen’s effector proteins. If an R-protein recognizes a pathogen’s presence, it usually induces a very strong immune response, in most cases stopping a would-be infection.

“This work further suggests that plants use an active, complex immune system to combat pathogens,” he said. “They have complicated surveillance systems that detect various infection-causing molecules and trigger defensive responses.”

A next step in this line of work is to look at other pathogen effector proteins and analyze their role in causing infections.

Mackey conducted the study with Ohio State colleagues Min Gab Kim, a graduate student in the department of plant cellular and molecular biology, and graduate student Luis da Cunha and post-doctoral fellow Aidan McFall, both in the department of horticulture and crop science; Youssef Belkhadir and Jeffrey Dangl, both with the department of biology at the University of North Carolina, Chapel Hill; and Sruti DebRoy, formerly of the U.S. Department of Energy Plant Research Laboratory at Michigan State University.

Funding for this work came from the National Science Foundation and the NSF’s Arabidopsis Project; Ohio State’s Ohio Agricultural and Research Development Center; and the U.S. Department of Energy.

| EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>