Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Plants use dual defense system to fight pathogens

03.06.2005


Researchers have uncovered the link between two biochemical pathways that plants use to defend themselves against pathogens – pathways that scientists have long believed worked independently of each other.



Knowing how these pathways of immunity work may one day help researchers breed plants that can better resist a variety of pathogens, said David Mackey, the study’s lead author and an assistant professor of horticulture and crop science at Ohio State University .

He and his colleagues explain their findings in the current issue of the journal Cell.


The researchers infected Arabidopsis plants with a bacterial strain of Pseudomonas syringae, a bacterium that usually infects tomato crops. Both Arabidopsis, a plant of the mustard family, and P. syringae are models that researchers commonly use to conduct basic plant research.

One of the immune pathways that interested the researchers recognizes what they call pathogen-associated molecular patterns, or PAMPs. The PAMP pathway appears to be a plant’s first line of defense against pathogenic attackers.

“The PAMP path induces a fairly weak immune response,” Mackey said. “Even so, there is growing evidence that suggests these kinds of responses are extremely important in restricting the growth of many pathogens.”

The other pathway uses disease-resistant proteins, or R-proteins, which can detect certain molecules, called effectors, that are secreted by pathogens. This pathway produces a stronger immune response than the PAMP pathway, Mackey said.

He and his colleagues found that the R-protein pathway steps in when PAMP is rendered useless by a pathogen.

Certain types of bacteria, including P. syringae, make a hypodermic needle-like structure that pierces the outermost membrane of a healthy plant or animal cell. The pathogen uses this conduit to send infectious effector proteins into the host cell.

While P. syringae injects about 40 different varieties of effector molecules into a plant cell, the researchers focused on the actions of two of these molecules – AvrRpt2 and AvrRpm1. Both target a protein key to Arabidopsis health­.

The scientists found that both of these effector molecules effectively shut down the PAMP pathway. But the plant’s R-proteins detect this, and come to the rescue.

“The R-proteins detect the insidious activity by which the pathogen’s effectors block the PAMP pathway,” Mackey said. “PAMP defense responses are probably often effective, but they may be blocked by the pathogen’s effector proteins. If an R-protein recognizes a pathogen’s presence, it usually induces a very strong immune response, in most cases stopping a would-be infection.

“This work further suggests that plants use an active, complex immune system to combat pathogens,” he said. “They have complicated surveillance systems that detect various infection-causing molecules and trigger defensive responses.”

A next step in this line of work is to look at other pathogen effector proteins and analyze their role in causing infections.

Mackey conducted the study with Ohio State colleagues Min Gab Kim, a graduate student in the department of plant cellular and molecular biology, and graduate student Luis da Cunha and post-doctoral fellow Aidan McFall, both in the department of horticulture and crop science; Youssef Belkhadir and Jeffrey Dangl, both with the department of biology at the University of North Carolina, Chapel Hill; and Sruti DebRoy, formerly of the U.S. Department of Energy Plant Research Laboratory at Michigan State University.

Funding for this work came from the National Science Foundation and the NSF’s Arabidopsis Project; Ohio State’s Ohio Agricultural and Research Development Center; and the U.S. Department of Energy.

| EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>