Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study spells out new evidence for roots of dyslexia

31.05.2005


Addressing a persistent debate in the field of dyslexia research, scientists at the University of Wisconsin-Madison and the University of Southern California (USC) have disproved the popular theory that deficits in certain visual processes cause the spelling and reading woes commonly suffered by dyslexics.



Rather, a more general problem in basic sensory perception may be at the root of the learning disorder, the scientists report today (May 29, 2005) in the journal Nature Neuroscience. The work suggests new ways to identify dyslexics and to assess the many unevaluated techniques teachers use to help dyslexics in the classroom.

Misfiring neurons perhaps make it difficult for dyslexics to pick out relevant visual and auditory cues from the expanse of surrounding sounds and patterns, or "noise"; it is this inability that may bear heavily on how easily a child can read, says lead author Anne Sperling, who conducted the research as a USC graduate student, alongside co-author Mark Seidenberg, a UW-Madison psychology professor who left USC in 2001.


"We really want to understand what is going on at the neurological level that’s leading to reading problems," says Sperling. "[We think] that if a child has a hard time ignoring ’noise,’ it could distort speech perception and complicate [the recognition] of sound segments, which is essential for learning how to read."

A learning disorder with neurological underpinnings, dyslexia affects between 5 to 10 percent of children in the U.S. Sperling calls the condition a "spiraling problem" because poor reading interferes with many types of learning.

Researchers first proposed during the 1920s that dyslexic children sometimes spell words backwards because they have trouble seeing straight. Five decades later, that idea out of favor as researchers increasingly believed that dyslexic reading problems are directly linked to the inability to blend phonemes, or the component sounds in any word.

A child needs to understand that spoken words consists of such sounds--that "bat" for example, includes three sounds ("buh," "aah" and "tuh") while the word "splat" has five. The knowledge makes it easier to learn how to pronounce letters, explains Seidenberg.

"For some reason [dyslexic children] are not developing knowledge of phonemes," says Seidenberg. "This has little impact on their spoken language, but really interferes with learning to read."

Scientists have long tried to understand why dyslexics stumble with phonemes. With recent advances in the understanding of the brain and visual processes, dyslexia researchers again turned in the 1990s to vision as the likely root of the learning disorder. In particular they focused on the magnocellular (M) pathway, one of two visual pathways in the brain that processes motion and brightness. The other visual channel, the parvocellular (P) pathway, processes detail and color.

Some studies implicated an impaired M channel, showing that dyslexic children have trouble seeing rapidly changing or moving stimuli. But the findings have not been readily replicated and there was little consensus among experts, says Sperling. "We wanted to know decisively once and for all whether it is the M pathway or not," she says.

Devising a new approach, Sperling gathered 28 dyslexic and 27 non-dyslexic children, and showed them a pattern on a computer screen showing alternating light and dark bars. One type of pattern, with thick, rapidly flickering bars, targeted study participants’ M pathways. The other type of pattern, with thinner non-flickering bars activated participants’ P pathways. The patterns appeared either on the left or right side of the screen, and the children’s task was to indicate which side they saw them.

When only the patterns appeared, the dyslexic children were as able as their peers to pick out both the M and P displays. But when Sperling partially obscured the patterns with patches of "noise," or television static-like bright and dark spots, the dyslexic children struggled to isolate both M and P patterns.

The work confirms that problems with "ignoring noise" play a more central role in the onset of dyslexia than the M and P pathways, Sperling says. An immediate classroom application, she suggests, could be for teachers to "accentuate differences between sounds, showing the extremes to help [dyslexic children] build categories."

Future studies should examine additional sensory systems, Seidenberg adds, to see if the noise idea holds for all senses and to seek connections between auditory and visual processes in dyslexia.

Anne Sperling | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>