Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: ’homemade’ gene expression technology unreliable

31.05.2005


OHSU scientist participates in study supporting wider use of commercial microarrays



Technology for analyzing gene expression must be standardized among laboratories and across platforms around the world to support this age of human genome exploration, an Oregon Health & Science University researcher says.

Otherwise, scientists using DNA microarrays, also known as gene chips, risk having their research results called into question, said Peter Spencer, Ph.D., professor of neurology in the OHSU School of Medicine.


Spencer, director of the OHSU Center for Research on Occupational and Environmental Toxicology, co-authored with several OHSU colleagues one of three articles about microarrays appearing this month in the journal Nature Methods. They show that geographically separated multi-investigator teams adopting common commercial, rather than homemade, microarray platforms and common sets of procedures are able to generate comparable data.

"The important point of the three papers is that with contemporary microarray platforms, we have a relatively reliable method with which to assess gene expression, we can do so reproducibly within an individual laboratory, and we can be confident that a similar result would be obtained if the experiment is repeated elsewhere," Spencer said.

Gene chips contain tens of thousands of tiny droplets containing a cell’s whole gene sequences that are laid out on a single microscope slide by fast-moving robotic machines. Scientists determine how the expression of individual genes is turned up or down by placing copies of DNA or RNA molecules labeled with fluorescent dyes on the slide, and examining whether the molecules that bind to a particular gene light up when viewed with a special scanner.

By interrogating thousands of genes at once, scientists can quickly pinpoint genes affected by drugs being tested to treat heart disease, mental illness, infectious diseases and cancer. In the past, researchers were only able to analyze a few genes at once, and they were often uncertain whether these were of greatest importance.

Spencer’s group is using the technology in two National Institute of Environmental Health Sciences (NIEHS) centers led by CROET – one with Oregon State University and the Battelle-run Pacific Northwest National Laboratory focuses on mechanisms underlying Superfund chemicals with neurotoxic properties; the other with the OHSU School of Medicine’s Department of Pediatrics focuses on neurotoxicogenomics and child health.

Srinivasa Nagalla, M.D., associate professor of pediatrics, and cell and developmental biology, OHSU School of Medicine, led the initial bioinformatics research that supported the Nature Methods publication.

"The gene chip is a revolution in technology that is hoped rapidly to advance understanding of biological mechanisms and methods to assess the actions and effects of drugs and chemicals," said Spencer, who estimates there are "hundreds, if not thousands" of laboratories around the country using DNA microarrays.

Microarray platforms came into widespread use about five years ago. Pioneers in the field constructed their own gene chips, but these have now been replaced by much more reliable commercial platforms that generate highly reproducible data. One of these is used by CROET and another by OHSU’s West Campus microarray resource facility.

"It’s possible to buy a robot which will take some copies of RNA on a small pin and then write that on a glass slide repetitively until one can build up hundreds of thousands of different spots on this glass array," Spencer said.

But as commercial platforms improved over time, many laboratory or "home-built" platforms have not, he said. "The fruits of the research done on some of the early homemade and early commercial platforms have entered the literature, but the platforms were not reliable because they did not produce reproducible results."

Spencer co-authored the Nature Methods study, titled "Standardizing Global Gene Expression Analysis Between Laboratories and Across Platforms," as part of the Toxicogenomics Research Consortium, a group led by the NIEHS whose members study how the genome is involved in responses to environmental stressors and toxicants.

The three-year, NIEHS-funded study compared a lab-built spotted long oligonucleotide microarray, and a commercially produced long oligonucleotide microarray. The two types were represented among 12 microarray platforms used by seven consortium laboratories, all of which generated data from two standard RNA expression samples, one derived from mouse livers and the other taken from tissues of several mouse organs.

According to the study, reproducibility between platforms and across laboratories was generally poor, but reproducibility between laboratories dramatically increased to acceptable levels when a commercial microarray was used with standardized protocols for labeling the RNA, processing the microarrays, acquiring data and other elements.

"The bottom line is that if you use commercial platforms, you get very good interlaboratory consistency and correlation of data," Spencer said. "We’ve now entered a new era in which we can move forward confident that we have reliable platforms."

And this is particularly important as scientists delve deeper into the genomes of humans and other animal species in their quest to find cures for a variety of diseases.

"Human genome mapping has made the production of these microarrays possible," Spencer said. "Our interest is in how environmental factors – drugs, pollutants, workplace substances, natural toxins, food chemicals, fragrance raw materials, other factors – impact or interact with the genome to produce disease. That’s the big task before us."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>