Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: ’homemade’ gene expression technology unreliable

31.05.2005


OHSU scientist participates in study supporting wider use of commercial microarrays



Technology for analyzing gene expression must be standardized among laboratories and across platforms around the world to support this age of human genome exploration, an Oregon Health & Science University researcher says.

Otherwise, scientists using DNA microarrays, also known as gene chips, risk having their research results called into question, said Peter Spencer, Ph.D., professor of neurology in the OHSU School of Medicine.


Spencer, director of the OHSU Center for Research on Occupational and Environmental Toxicology, co-authored with several OHSU colleagues one of three articles about microarrays appearing this month in the journal Nature Methods. They show that geographically separated multi-investigator teams adopting common commercial, rather than homemade, microarray platforms and common sets of procedures are able to generate comparable data.

"The important point of the three papers is that with contemporary microarray platforms, we have a relatively reliable method with which to assess gene expression, we can do so reproducibly within an individual laboratory, and we can be confident that a similar result would be obtained if the experiment is repeated elsewhere," Spencer said.

Gene chips contain tens of thousands of tiny droplets containing a cell’s whole gene sequences that are laid out on a single microscope slide by fast-moving robotic machines. Scientists determine how the expression of individual genes is turned up or down by placing copies of DNA or RNA molecules labeled with fluorescent dyes on the slide, and examining whether the molecules that bind to a particular gene light up when viewed with a special scanner.

By interrogating thousands of genes at once, scientists can quickly pinpoint genes affected by drugs being tested to treat heart disease, mental illness, infectious diseases and cancer. In the past, researchers were only able to analyze a few genes at once, and they were often uncertain whether these were of greatest importance.

Spencer’s group is using the technology in two National Institute of Environmental Health Sciences (NIEHS) centers led by CROET – one with Oregon State University and the Battelle-run Pacific Northwest National Laboratory focuses on mechanisms underlying Superfund chemicals with neurotoxic properties; the other with the OHSU School of Medicine’s Department of Pediatrics focuses on neurotoxicogenomics and child health.

Srinivasa Nagalla, M.D., associate professor of pediatrics, and cell and developmental biology, OHSU School of Medicine, led the initial bioinformatics research that supported the Nature Methods publication.

"The gene chip is a revolution in technology that is hoped rapidly to advance understanding of biological mechanisms and methods to assess the actions and effects of drugs and chemicals," said Spencer, who estimates there are "hundreds, if not thousands" of laboratories around the country using DNA microarrays.

Microarray platforms came into widespread use about five years ago. Pioneers in the field constructed their own gene chips, but these have now been replaced by much more reliable commercial platforms that generate highly reproducible data. One of these is used by CROET and another by OHSU’s West Campus microarray resource facility.

"It’s possible to buy a robot which will take some copies of RNA on a small pin and then write that on a glass slide repetitively until one can build up hundreds of thousands of different spots on this glass array," Spencer said.

But as commercial platforms improved over time, many laboratory or "home-built" platforms have not, he said. "The fruits of the research done on some of the early homemade and early commercial platforms have entered the literature, but the platforms were not reliable because they did not produce reproducible results."

Spencer co-authored the Nature Methods study, titled "Standardizing Global Gene Expression Analysis Between Laboratories and Across Platforms," as part of the Toxicogenomics Research Consortium, a group led by the NIEHS whose members study how the genome is involved in responses to environmental stressors and toxicants.

The three-year, NIEHS-funded study compared a lab-built spotted long oligonucleotide microarray, and a commercially produced long oligonucleotide microarray. The two types were represented among 12 microarray platforms used by seven consortium laboratories, all of which generated data from two standard RNA expression samples, one derived from mouse livers and the other taken from tissues of several mouse organs.

According to the study, reproducibility between platforms and across laboratories was generally poor, but reproducibility between laboratories dramatically increased to acceptable levels when a commercial microarray was used with standardized protocols for labeling the RNA, processing the microarrays, acquiring data and other elements.

"The bottom line is that if you use commercial platforms, you get very good interlaboratory consistency and correlation of data," Spencer said. "We’ve now entered a new era in which we can move forward confident that we have reliable platforms."

And this is particularly important as scientists delve deeper into the genomes of humans and other animal species in their quest to find cures for a variety of diseases.

"Human genome mapping has made the production of these microarrays possible," Spencer said. "Our interest is in how environmental factors – drugs, pollutants, workplace substances, natural toxins, food chemicals, fragrance raw materials, other factors – impact or interact with the genome to produce disease. That’s the big task before us."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>