Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: ’homemade’ gene expression technology unreliable

31.05.2005


OHSU scientist participates in study supporting wider use of commercial microarrays



Technology for analyzing gene expression must be standardized among laboratories and across platforms around the world to support this age of human genome exploration, an Oregon Health & Science University researcher says.

Otherwise, scientists using DNA microarrays, also known as gene chips, risk having their research results called into question, said Peter Spencer, Ph.D., professor of neurology in the OHSU School of Medicine.


Spencer, director of the OHSU Center for Research on Occupational and Environmental Toxicology, co-authored with several OHSU colleagues one of three articles about microarrays appearing this month in the journal Nature Methods. They show that geographically separated multi-investigator teams adopting common commercial, rather than homemade, microarray platforms and common sets of procedures are able to generate comparable data.

"The important point of the three papers is that with contemporary microarray platforms, we have a relatively reliable method with which to assess gene expression, we can do so reproducibly within an individual laboratory, and we can be confident that a similar result would be obtained if the experiment is repeated elsewhere," Spencer said.

Gene chips contain tens of thousands of tiny droplets containing a cell’s whole gene sequences that are laid out on a single microscope slide by fast-moving robotic machines. Scientists determine how the expression of individual genes is turned up or down by placing copies of DNA or RNA molecules labeled with fluorescent dyes on the slide, and examining whether the molecules that bind to a particular gene light up when viewed with a special scanner.

By interrogating thousands of genes at once, scientists can quickly pinpoint genes affected by drugs being tested to treat heart disease, mental illness, infectious diseases and cancer. In the past, researchers were only able to analyze a few genes at once, and they were often uncertain whether these were of greatest importance.

Spencer’s group is using the technology in two National Institute of Environmental Health Sciences (NIEHS) centers led by CROET – one with Oregon State University and the Battelle-run Pacific Northwest National Laboratory focuses on mechanisms underlying Superfund chemicals with neurotoxic properties; the other with the OHSU School of Medicine’s Department of Pediatrics focuses on neurotoxicogenomics and child health.

Srinivasa Nagalla, M.D., associate professor of pediatrics, and cell and developmental biology, OHSU School of Medicine, led the initial bioinformatics research that supported the Nature Methods publication.

"The gene chip is a revolution in technology that is hoped rapidly to advance understanding of biological mechanisms and methods to assess the actions and effects of drugs and chemicals," said Spencer, who estimates there are "hundreds, if not thousands" of laboratories around the country using DNA microarrays.

Microarray platforms came into widespread use about five years ago. Pioneers in the field constructed their own gene chips, but these have now been replaced by much more reliable commercial platforms that generate highly reproducible data. One of these is used by CROET and another by OHSU’s West Campus microarray resource facility.

"It’s possible to buy a robot which will take some copies of RNA on a small pin and then write that on a glass slide repetitively until one can build up hundreds of thousands of different spots on this glass array," Spencer said.

But as commercial platforms improved over time, many laboratory or "home-built" platforms have not, he said. "The fruits of the research done on some of the early homemade and early commercial platforms have entered the literature, but the platforms were not reliable because they did not produce reproducible results."

Spencer co-authored the Nature Methods study, titled "Standardizing Global Gene Expression Analysis Between Laboratories and Across Platforms," as part of the Toxicogenomics Research Consortium, a group led by the NIEHS whose members study how the genome is involved in responses to environmental stressors and toxicants.

The three-year, NIEHS-funded study compared a lab-built spotted long oligonucleotide microarray, and a commercially produced long oligonucleotide microarray. The two types were represented among 12 microarray platforms used by seven consortium laboratories, all of which generated data from two standard RNA expression samples, one derived from mouse livers and the other taken from tissues of several mouse organs.

According to the study, reproducibility between platforms and across laboratories was generally poor, but reproducibility between laboratories dramatically increased to acceptable levels when a commercial microarray was used with standardized protocols for labeling the RNA, processing the microarrays, acquiring data and other elements.

"The bottom line is that if you use commercial platforms, you get very good interlaboratory consistency and correlation of data," Spencer said. "We’ve now entered a new era in which we can move forward confident that we have reliable platforms."

And this is particularly important as scientists delve deeper into the genomes of humans and other animal species in their quest to find cures for a variety of diseases.

"Human genome mapping has made the production of these microarrays possible," Spencer said. "Our interest is in how environmental factors – drugs, pollutants, workplace substances, natural toxins, food chemicals, fragrance raw materials, other factors – impact or interact with the genome to produce disease. That’s the big task before us."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>