Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Difference in talking louder, talking over noise depends on verbal cues, internal targets

31.05.2005


Quick subconscious thinking decides ‘how much louder?’ and which muscles to use



How someone tells you to "keep quiet" affects whether or how you might comply. But what happens when you’re asked to "talk louder," or you’re talking and the background noise level suddenly goes up?

Purdue University researchers found that how you get louder is a function of how you’re told to speak louder and environmental cues. Far more surprising, they discovered that trying to talk louder in response to verbal or other cues involves different sets of muscles and setting internal performance goals – all accomplished subconsciously, involving neural control of the respiratory system. "It’s entirely shifted my thinking about how the respiratory system works in speech," lead researcher Jessica E. Huber said. "We never viewed respiration as a flexible system, just whether it was efficient or not. But we found that respiratory control is very context-dependent, and changes in the linguistic or cognitive load of the speech task alters the neural control of the respiratory system," Huber added.


The study, entitled "Changes to respiratory mechanisms during speech as a result of different cues to increase loudness," appears in the June issue of the Journal of Applied Physiology, published by the American Physiological Society. The research was conducted by Jessica E. Huber, Bharath Chandrasekaran and John J. Wolstencroft, Department of Speech, Language and Hearing Sciences, Purdue University.

Rethinking childhood speech therapy, helping adults with injuries or Parkinson’s

The results have the potential to greatly influence speech therapy in cases ranging from spinal injury to Parkinson’s disease, cerebral palsy, multiple sclerosis, stroke or other brain injury. The study said it is "important to consider the efficiency of the patterns elicited by these cues, from a work perspective, when planning a treatment."

"Since the respiratory system provides the pressure that allows us to speak, it’s critical that we understand how it’s controlled," Huber noted. "From a neural control perspective it’s an interesting study, but in modeling speech, understanding how kids learn to speak, and how diseases change the system, these results give us a whole new integrated system to consider," she added. "Based on our results, we think that the differential physiological mechanisms are all related to the internal model or target of what people think they need to do, at least partly based on what we told them, the cues we gave them through those instructions."

Surprising and differing results from three simple tasks

The researchers asked 15 men and 15 women in their early 20s to read short and long sentences at four "sound pressure levels" (SPL): comfortable, twice as loud as the comfortable level, 10 decibels (dB) higher than comfortable (with a visual clue for judging the SPL), and finally with artificial noise piped in but no instructions on how loud to speak.

A surprising thing happened. The average comfortable speech level was around 80dB, about the sound level of manual tools or a doorbell ringing. The 80dB was for all subjects, regardless of sex or interaction effects. Even more amazing was that in all three of the test conditions all subjects hovered right around the 90dB level, despite the different instructions, or lack of instruction. (90 dB is about what a tractor or a shouted conversation would sound like. The traditional jackhammer chimes in at about 130 dB.)

What was different was how subjects produced the requested sound pressure level (SPL):

• 10 dB higher: subjects took a deep breath, thus increasing lung volume to take advantage of higher "recoil pressures," the natural "push" lungs provide, partly because they "snap" back into position. The researchers believe "subjects may have perceived maintaining an SPL at nearly 90dB as difficult and planned in advance to achieve this goal."

• Twice as loud: subjects increased their expiratory muscle tension and pressure by squeezing their abdominal or stomach muscles. This was the "only condition where there were significant changes from ’comfortable’ in the abdominal measurements." This large increase "may suggest that subjects underestimated the amount of pressure that would be required….They may have realized the need for more driving pressure as they moved through the utterance," the paper reported.

• Noise: In this more normal situation and without specific instructions on how to cope with the noise, subjects perhaps felt the most natural. The subjects used a combination of increased recoil pressure and increasing expiratory muscle tension, but less strongly than in the other situations. The paper speculates that this respiratory combination spreads "the work across a larger set of muscles…appeared to be the most efficient, and required the least muscular effort from the speaker." Indeed, participants said the noise scenario was the "easiest" in terms of producing SPL.

’Noise’ prompts higher SPL, but also effort for clarity by slowing down

Most interesting of all the findings was that in the "noise scenario," all speakers slowed their speech markedly. Why? "Speakers may have perceived the need to use a slower speech rate in the noise condition to improve the intelligibility of the speech signal in the noise," the paper states. "These data suggest that goals for speech production were more complex in the noise condition than in the other two loud conditions; ie., to improve intelligibility in addition to increasing loudness."

Next steps

Differences in how people perceive the task of speaking affect how they use their respiratory systems to support speech. This means researchers "need to look at specific cognitive or linguistic loads to study exactly what is changing relative to the control of the respiratory system during speech production," Huber said.

"Previously we used to debate whether the respiratory aspect of speech was context-dependent, impacted by what kind of instructions are given, but it’s never been demonstrated before. Now we need to determine how changes in the linguistic or cognitive load alter the neural control of the respiratory system. We thought that the ’higher order speech components’ like the articulatory system were more finely tuned to cognitive and linguistic load compared with the respiratory system, but this may not be the case. The respiratory system deserves just as much attention in the future," Huber concluded.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>