Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic stimulation may improve stroke recovery

24.05.2005


A new therapy that uses magnetic pulses to stimulate the brain may improve recovery after a stroke, according to a study published in the May 24 issue of Neurology, the scientific journal of the American Academy of Neurology.



The treatment, called repetitive transcranial magnetic stimulation, improved motor function in a small group of people. For the stimulation, an insulated wire coil is placed on the scalp, and a brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the outer part of the brain, called the cortex.

The study involved eight people, ages 35 to 63, who had a stroke within the last year and were relearning to use their affected hands. They were compared to six people who had never had a stroke. The stroke patients received three sessions of magnetic stimulation to the side of the brain that had not been affected by the stroke using different parameters, including sham (mock) stimulation. A sham is the application of the procedure excluding the actual treatment being studied and is intended to address the question of a placebo effect. The six healthy participants were tested with the same battery of tests to evaluate the learning effect associated with repeated testing.


All of the participants performed tests before and after the stimulations. The tests evaluated the motor function of the hand that was affected by the stroke. For example, reaction time was tested, along with how many finger taps could be performed over a period of time.

The stroke patients improved by as much as 50 percent on some of the tests, such as reaction time when stimulation was applied to the side of the brain not affected by the stroke so as to reduce the motor activity of the unaffected hemisphere and promote an increase in the activity in the damaged hemisphere. Also, there was no improvement in the motor function following sham stimulation in the stroke patients. There was also no motor improvement in the healthy volunteers following repeated testing.

"These results are exciting because magnetic stimulation is a non-invasive, painless therapy that can be done while patients are awake," said study author Felipe Fregni, MD, PhD, of Harvard Medical School and Beth Israel Deaconess Medical Center in Boston. "These results need to be confirmed by larger studies with more patients, but the results are encouraging."

The study was supported by the Harvard Thorndike General Clinical Research Center at Beth Israel Deaconess Medical Center, a grant within the Harvard Medical School Scholars in Clinical Science Program, and by grants from the National Institutes of Health.

Robin Thompson | EurekAlert!
Further information:
http://www.aan.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>