Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New polysaccharide may help combat multidrug resistance in cancer

23.05.2005


In a recent study published in the Journal of Biological Chemistry, scientists report that a molecule previously thought to play a purely structural and inert role in cells is actually involved in multidrug resistance in cancer. Using antagonists for this molecule, the researchers were able to sensitize drug resistant breast cancer cells to chemotherapeutic drug treatment.



The research appears as the "Paper of the Week" in the May 27 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Multidrug resistance is very common in most types of cancers, making it one of the leading problems in cancer therapy. It is often caused by an increase in the cell’s production of proteins that transport drugs out of the cell, preventing the drugs from combating cancer.


Previously, Dr. Bryan P. Toole and his coworkers, Drs. Suniti Misra and Shibnath Ghatak, of the Medical University of South Carolina noticed that small pieces, or oligomers, of a polysaccharide called hyaluronan were able to sensitize drug-resistant breast cancer cells to several different chemotherapeutic drugs. He believed that the polysaccharide oligomers were binding to a receptor for hyaluronan (called CD44) and preventing it from initiating a signaling cascade that would result in drug resistance.

"It is very surprising that hyaluronan is involved in drug resistance," admits Dr. Toole. "Most scientists think of hyaluronan as a structural and inert molecule. In adult tissues it plays two roles. First, it assists in tissue hydration and in biophysical properties such as resilience. Second, it forms a template to which matrix proteins attach and form important extracellular structural complexes."

Hyaluronan also accumulates around the outside of cells during disease processes such as early atherogenesis, persistent inflammation, and cancer. In recent years, however, hyaluronan has also been shown to induce signaling pathways in inflammatory, embryonic and cancer cells.

In their current Journal of Biological Chemistry paper, Dr. Toole and his colleagues report on further studies which indicate that hyaluronan increases the cellular production of a multidrug transporter protein by binding to CD44. They discovered that antagonist molecules that bind to hyaluronan and prevent it from interacting with CD44 were able to sensitize multidrug resistant breast cancer cells to chemotherapeutic drugs. The researchers also found that increasing hyaluronan synthesis in cells increased resistance to drug treatment.

"Our work indicates that hyaluronan antagonists, for example small hyaluronan oligomers, reverse the malignant properties of cancer cells, including proliferation, invasiveness, and drug resistance," explains Dr. Toole. "Hyaluronan oligomers are non-toxic, non-immunogenic, and readily applicable to several proliferative disease processes, especially cancer. We are hoping that hyaluronan antagonists can be used in conjunction with chemotherapy such that much lower and less toxic doses of chemotherapeutic agents can be used."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>