Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New polysaccharide may help combat multidrug resistance in cancer

23.05.2005


In a recent study published in the Journal of Biological Chemistry, scientists report that a molecule previously thought to play a purely structural and inert role in cells is actually involved in multidrug resistance in cancer. Using antagonists for this molecule, the researchers were able to sensitize drug resistant breast cancer cells to chemotherapeutic drug treatment.



The research appears as the "Paper of the Week" in the May 27 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Multidrug resistance is very common in most types of cancers, making it one of the leading problems in cancer therapy. It is often caused by an increase in the cell’s production of proteins that transport drugs out of the cell, preventing the drugs from combating cancer.


Previously, Dr. Bryan P. Toole and his coworkers, Drs. Suniti Misra and Shibnath Ghatak, of the Medical University of South Carolina noticed that small pieces, or oligomers, of a polysaccharide called hyaluronan were able to sensitize drug-resistant breast cancer cells to several different chemotherapeutic drugs. He believed that the polysaccharide oligomers were binding to a receptor for hyaluronan (called CD44) and preventing it from initiating a signaling cascade that would result in drug resistance.

"It is very surprising that hyaluronan is involved in drug resistance," admits Dr. Toole. "Most scientists think of hyaluronan as a structural and inert molecule. In adult tissues it plays two roles. First, it assists in tissue hydration and in biophysical properties such as resilience. Second, it forms a template to which matrix proteins attach and form important extracellular structural complexes."

Hyaluronan also accumulates around the outside of cells during disease processes such as early atherogenesis, persistent inflammation, and cancer. In recent years, however, hyaluronan has also been shown to induce signaling pathways in inflammatory, embryonic and cancer cells.

In their current Journal of Biological Chemistry paper, Dr. Toole and his colleagues report on further studies which indicate that hyaluronan increases the cellular production of a multidrug transporter protein by binding to CD44. They discovered that antagonist molecules that bind to hyaluronan and prevent it from interacting with CD44 were able to sensitize multidrug resistant breast cancer cells to chemotherapeutic drugs. The researchers also found that increasing hyaluronan synthesis in cells increased resistance to drug treatment.

"Our work indicates that hyaluronan antagonists, for example small hyaluronan oligomers, reverse the malignant properties of cancer cells, including proliferation, invasiveness, and drug resistance," explains Dr. Toole. "Hyaluronan oligomers are non-toxic, non-immunogenic, and readily applicable to several proliferative disease processes, especially cancer. We are hoping that hyaluronan antagonists can be used in conjunction with chemotherapy such that much lower and less toxic doses of chemotherapeutic agents can be used."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>