Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of administering anti-cancer drug may be more effective, safer

19.05.2005


A novel way of administering an anti-cancer drug to bone-marrow transplant patients using continuous infusion may be more effective and safer than the method currently used, new study findings indicate.



The new method achieves more predictable, stable drug levels in patients than the current method and could eventually allow doctors to more accurately adjust doses to accommodate individual differences in metabolism, thus increasing treatment effectiveness while avoiding side effects, said University of North Carolina at Chapel Hill researchers.

The findings were presented at the 2005 annual meeting of the American Society of Clinical Oncology, held May 13 through 17 in Orlando, Fla. The drug busulfan is used in leukemia patients to kill cancerous cells before bone-marrow transplant. Currently, it is administered in intermittent intravenous doses, typically via two-hour infusions of the drug every six hours. Previous studies have reported that frequent dose adjustments are needed to maintain the desired level of drug in patients and that metabolism of the drug varies from patient to patient.


"The new continuous-infusion method achieved more predictable levels of the drug than does the usual delivery method," said Dr. Thomas C. Shea, professor of medicine at UNC, director of the Bone Marrow Transplant Program at the UNC Health Care System and a member of the UNC Lineberger Comprehensive Cancer Center.

"In the relatively small number of patients tested with continuous infusion, there didn’t appear to be a change in concentration or clearance of the drug during the 90-hour infusion period."

In 12 patients scheduled for bone marrow transplants, UNC researchers administered a single busulfan test dose of 0.8 mg/kg adjusted body weight over two hours. Blood concentrations of the drug were measured every two hours for eight hours following that test dose.

Then researchers administered busulfan by the novel method - patients received a continuous IV infusion for 90 hours. Blood concentrations of the drug were monitored every six hours.

With the new method, the test dose predicted the patients’ blood levels of the drug with less than 10 percent variability.

In a separate study using a test dose and the standard intermittent delivery method, the patients metabolized the drug more slowly as the intermittent doses continued. By the 13th and final dose, on average the variability between the test-dose prediction and the actual levels had grown to more than 20 percent.

The new method may prevent side effects and increase effectiveness by maintaining a more consistent level of drug in the blood and avoiding extreme highs and lows, Shea said. "We hope this novel delivery method will be safer, and we hope it will allow us to give more total drug, which will do a better job by killing more cancer cells."

In the patients’ studied, side effects were similar to those seen in current treatment. "This prolonged infusion looks like it’s at least as safe as what we’ve been doing before," Shea said.

Because patients appear to metabolize busulfan more predictably when receiving it by continuous infusion, doctors may be able to more effectively tailor doses to individuals. "This novel delivery method may give us a new opportunity for consistent and targeted dosing for individual patients," Shea said.

Shea and his colleagues are developing a study of such tailored dosing and hope to open a clinical trial by the end of the summer.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>