Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of administering anti-cancer drug may be more effective, safer

19.05.2005


A novel way of administering an anti-cancer drug to bone-marrow transplant patients using continuous infusion may be more effective and safer than the method currently used, new study findings indicate.



The new method achieves more predictable, stable drug levels in patients than the current method and could eventually allow doctors to more accurately adjust doses to accommodate individual differences in metabolism, thus increasing treatment effectiveness while avoiding side effects, said University of North Carolina at Chapel Hill researchers.

The findings were presented at the 2005 annual meeting of the American Society of Clinical Oncology, held May 13 through 17 in Orlando, Fla. The drug busulfan is used in leukemia patients to kill cancerous cells before bone-marrow transplant. Currently, it is administered in intermittent intravenous doses, typically via two-hour infusions of the drug every six hours. Previous studies have reported that frequent dose adjustments are needed to maintain the desired level of drug in patients and that metabolism of the drug varies from patient to patient.


"The new continuous-infusion method achieved more predictable levels of the drug than does the usual delivery method," said Dr. Thomas C. Shea, professor of medicine at UNC, director of the Bone Marrow Transplant Program at the UNC Health Care System and a member of the UNC Lineberger Comprehensive Cancer Center.

"In the relatively small number of patients tested with continuous infusion, there didn’t appear to be a change in concentration or clearance of the drug during the 90-hour infusion period."

In 12 patients scheduled for bone marrow transplants, UNC researchers administered a single busulfan test dose of 0.8 mg/kg adjusted body weight over two hours. Blood concentrations of the drug were measured every two hours for eight hours following that test dose.

Then researchers administered busulfan by the novel method - patients received a continuous IV infusion for 90 hours. Blood concentrations of the drug were monitored every six hours.

With the new method, the test dose predicted the patients’ blood levels of the drug with less than 10 percent variability.

In a separate study using a test dose and the standard intermittent delivery method, the patients metabolized the drug more slowly as the intermittent doses continued. By the 13th and final dose, on average the variability between the test-dose prediction and the actual levels had grown to more than 20 percent.

The new method may prevent side effects and increase effectiveness by maintaining a more consistent level of drug in the blood and avoiding extreme highs and lows, Shea said. "We hope this novel delivery method will be safer, and we hope it will allow us to give more total drug, which will do a better job by killing more cancer cells."

In the patients’ studied, side effects were similar to those seen in current treatment. "This prolonged infusion looks like it’s at least as safe as what we’ve been doing before," Shea said.

Because patients appear to metabolize busulfan more predictably when receiving it by continuous infusion, doctors may be able to more effectively tailor doses to individuals. "This novel delivery method may give us a new opportunity for consistent and targeted dosing for individual patients," Shea said.

Shea and his colleagues are developing a study of such tailored dosing and hope to open a clinical trial by the end of the summer.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>