Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice, Iowa state biologists search for ’half-fusion’

17.05.2005


Study shows illusive ’hemifusion’ state can precede membrane merger



Every living cell is surrounded by a membrane, a thin barrier that separates the genetic machinery of life from the non-living world outside. Though barriers, membranes are not impervious. Cells use a complex hierarchy of proteins that work in concert to allow cell membranes to fuse – with other cells or with membrane-encased packages of proteins and other chemicals that the cell needs to take in or release.

Though well-studied, the molecular details of membrane fusion remain mysterious. In particular, scientists don’t understand how holes form between two membranes, but a new study by biochemists at Rice University and Iowa State University offers intriguing new clues about the nature of this process. The study is published in this month’s issue of Nature Structural and Molecular Biology.


"Membrane fusion is one of the most basic processes of life," said James McNew, assistant professor of biochemistry and cell biology at Rice University. "It begins at fertilization and occurs billions of times a second in our bodies, and if it ever stops, we die."

For example, inside the cells in our brains, spines and nerves, membranes are used to seal up and transport tiny packets of signaling chemicals from the center of the cell to the outer cell membrane. These packets, or vesicles, wait just inside the cell membrane for the appropriate signal, and once they receive it, they fuse with the membrane and eject their contents into the surrounding tissue, causing an immediate chain reaction that keeps our hearts beating and allows us to move our muscles. Membrane fusion is also used to initiate disease. "Some invading organisms like enveloped viruses use the fusion process to infect the cell," McNew said.

To understand membrane fusion, it helps to envision the basic structure of membranes. Just five billionths of meter across, membranes are bilayers, meaning they contain two separate layers, or sheets of fatty acids. Each of these sheets has a one side that is strongly attracted to water and one side that strongly repels it. The water-hating sides of the sheets stick tightly to one another, sealing out water on either side of the bilayer.

Additionally, all biological membranes are dotted with proteins, and some of these are called transmembrane proteins, meaning parts of them penetrate through the membrane like a needle through cloth. A large body of evidence suggests that a class of transmembrane proteins called SNAREs are responsible for driving membrane fusion during normal cellular activity. Exactly how they do this is unknown, but previous studies have suggested two possibilities.

One model proposes that the portion of the SNARE protein that crosses the membrane forms a pore-like connection that mixes both layers of the membrane in one step. The other theory suggests that the SNARE proteins mix the two separate layers of a membrane one at a time, generating an intermediate stated called "hemifusion" or half-fusion. During hemifusion, the outer, water-loving sides of two membranes become connected, and the inner water-loving layers do not. In this state, the combining cells or vesicles could transfer proteins and other material stuck to their outside layers, but they do not exchange any material that’s locked inside. Hemifusion has been observed in non-biological membranes containing no proteins, but has been difficult to detect with SNARE proteins.

McNew and his Iowa State colleagues, Yeon-Kyun Shin, Zengliu Su, Fan Zhang and Yibin Xu, developed an ingenious method of tagging both inner and outer portions of the synthetic membranes with fluorescent dyes so they could use fluorescence spectroscopy to assay mixing of the inner and outer layers.

McNew and colleagues sought to find out if hemifusion was an intermediate fusion state in biological systems, so they created a test system that contained a lipid bilayer studed with SNARE proteins taken from bakers yeast. Using both normal SNAREs and a mutant variety, they were able to show that membrane fusion catalyzed by the SNARE machinery mixes the outer layer of the membrane separately from the inner layer -- a hallmark of hemifusion -- suggesting that a hemifusion intermediate can exist in biological systems and may well be the mechanism that all living cells utilize.

Preliminary data from follow-up studies indicate that these results are also generalizable to SNARE proteins from animals.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>