Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative study finds way to ’bio-synthesize’ an anti-cancer compound

10.05.2005


Microbe in sea squirts key to process

In a project that could have far-reaching implications for natural-product drug development, scientists have shown how a microbe that lives inside sea squirts could be used to biosynthesize a chemical compound that may help fight cancer. The photosynthetic microbe, Prochloron didemni, lives as an endosymbiont inside the sea squirt Lissoclinum patella. So far, scientists have not been able to culture the microbe anywhere else.

Ground-up extracts of that sea squirt have been shown to contain patellamides, small peptides that appear useful in treating some cancers. Until this study, scientists had suspected – but had not proven – that Prochloron microbes produce patellamides.



The research paper, published online this week in the Proceedings of the National Academy of Sciences (PNAS), demonstrates that Prochloron didemni produces two patellamide compounds (A and C) and pinpoints the gene pathways that are used in that chemical biosynthesis.

"Coral reefs and other ocean environments are like rainforests – full of natural chemicals to potentially treat human disease," says Eric W. Schmidt, Ph.D., assistant professor of medicinal chemistry at the University of Utah’s College of Pharmacy. "Unfortunately, it’s difficult to supply pharmaceuticals from these delicate environments. We have solved this by finding specific genes for the synthesis of chemicals using laboratory bacteria."

Schmidt had isolated and prepared the DNA of the microbe samples collected from sea squirts in the seabed near the Republic of Palau in Micronesia. Jacques Ravel, Ph.D., and other scientists at The Institute for Genomic Research (TIGR) in Rockville, MD, then sequenced the Prochloron genome. Working with Schmidt, they found the chemical pathways in the microbe’s gene sequence that are responsible for producing patellamide A and C.

Ravel, who led TIGR’s role in the project, says: "For the first time, we have demonstrated the bacterial origin of a natural product from tunicates, an important source of marine drug candidates." He added that the study "demonstrates how genomics can assist natural products chemistry and work towards sustainable production of important marine drug candidates from microbes. This process can speed up the time it takes for a drug to go from lead compound to actual drugs."

By proving that the patellamide compounds are made by the microbes inside sea squirts, scientists say, the study shows it would be possible to produce sufficient quantities of patellamides through biosynthesis without having to destroy a large numbers of sea squirts in the process. The study was funded as part of a National Science Foundation (NSF) grant in the Emerging Frontiers program (Microbial Genome Sequencing).

Because patellamides are small cyclic peptides (consisting of eight amino acids), scientists had at first thought that – as in the case of many other small cyclic peptides – the biosynthetic mechanism involved a "non-ribosomal peptide synthetase," a large multimodular enzyme that incorporates amino acids residue into a peptide.

When scientists did not find such a chemical system related to patellamides in the microbe’s draft genome sequence, they examined alternative biosynthetic mechanisms. Because it is a peptide, a ribosomal mechanism was an obvious possibility.

In a collaboration with Schmidt, TIGR scientists looked for every combination of eight amino acids constituting the cyclic patellamides in the draft genome. Ravel’s group found the sequence for Patellamide A, and – after further examination – Schmidt’s group found the Patellamide C sequence adjacent to the patellamide A sequence in the same pre-peptides. After the gene cluster was annotated, Schmidt used the TIGR information to develop the likely mechanism for the biosynthesis of the patellamides and he demonstrated how the biosynthesis could be accomplished.

The Prochloron genome project – which also involves collaborator Margo Haygood at the Scripps Institution of Oceanography at the University of California in San Diego – is still under way, with scientists exploring more aspects of the microbe’s DNA sequence.

TIGR’s Jonathan Eisen, an evolutionary biologist, says the PNAS study also helps explain how a specific microbe contributes to the biology of its host organism: "This study is particularly important since it helps reveal how a bacterial symbiont plays a role in the biology of a tunicate, which as a representative of the chordates, is not so far away from humans in the tree of life."

Eisen says the study "shows yet another way that microorganisms contribute to the biology of animals. Most animals, including humans, simply cannot survive without the functions and activities provided to them by mutualistic microorganisms that live either inside or in association with them."

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>