Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers explain how organic molecules bind to semiconductor surfaces

09.05.2005


Findings have implications for semiconductor industry


Snapshots illustrating the products formed by the addition of an organic molecule (butadiene) to a silicon surface. Green spheres denote carbon, white spheres denote hydrogen, blue spheres denote silicon, grey spheres and blue surfaces denote centers of high electron density, and red spheres denote local positive charge.



Chemists at New York University have elucidated a mechanism by which organic molecules attach to semiconductor surfaces, a finding that has implications for the semiconductor industry. The industry has sought ways to exploit the attachment process for a variety of purposes. The findings, along with a review of the methodology employed in the study, appear in the latest issue of the Proceedings of the National Academy of Sciences and build on studies published by the same team in the Journal of the American Chemical Society.

Mark Tuckerman, an associate professor in NYU’s Department of Chemistry and its Courant Institute of Mathematical Sciences, along with graduate student Peter Minary and postdoctoral researcher Radu Iftimie, examined how a butadiene, a particular organic molecule, binds to a particular silicon surface using first-principles computer-based models (Iftimie is now an assistant professor at the University of Montreal, and Minary is a postdoctoral researcher at Stanford University).


The researchers were able to identify four principal products that a butadiene can form when binding to the particular silicon surface they studied. These products had been observed independently in experiments performed elsewhere. More importantly, the researchers were able to rationalize this product distribution with a unified mechanistic picture that addresses a long-standing controversy about the reactions they studied. This mechanism could be used to predict how other organic molecules will attach to the surface and what products might be expected.

The researchers also explored a process of importance in lithography, or surface patterning, wherein they examined how an organic molecule comes off a surface. The process is crucial to the production of computer chips because it requires superimposing surface patterns multiple times with pinpoint accuracy. Specifically, they "reverse engineered" an organic molecule using only their computer model that was found to undergo the reverse reaction--i.e., detachment from the surface--more easily than the original butadiene used in the attachment studies. This finding suggests that the reaction chemistry at the semiconductor surface can be controlled by custom designing or tailoring molecules that exhibit specific desired properties in the reactions they undergo.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>