Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers explain how organic molecules bind to semiconductor surfaces

09.05.2005


Findings have implications for semiconductor industry


Snapshots illustrating the products formed by the addition of an organic molecule (butadiene) to a silicon surface. Green spheres denote carbon, white spheres denote hydrogen, blue spheres denote silicon, grey spheres and blue surfaces denote centers of high electron density, and red spheres denote local positive charge.



Chemists at New York University have elucidated a mechanism by which organic molecules attach to semiconductor surfaces, a finding that has implications for the semiconductor industry. The industry has sought ways to exploit the attachment process for a variety of purposes. The findings, along with a review of the methodology employed in the study, appear in the latest issue of the Proceedings of the National Academy of Sciences and build on studies published by the same team in the Journal of the American Chemical Society.

Mark Tuckerman, an associate professor in NYU’s Department of Chemistry and its Courant Institute of Mathematical Sciences, along with graduate student Peter Minary and postdoctoral researcher Radu Iftimie, examined how a butadiene, a particular organic molecule, binds to a particular silicon surface using first-principles computer-based models (Iftimie is now an assistant professor at the University of Montreal, and Minary is a postdoctoral researcher at Stanford University).


The researchers were able to identify four principal products that a butadiene can form when binding to the particular silicon surface they studied. These products had been observed independently in experiments performed elsewhere. More importantly, the researchers were able to rationalize this product distribution with a unified mechanistic picture that addresses a long-standing controversy about the reactions they studied. This mechanism could be used to predict how other organic molecules will attach to the surface and what products might be expected.

The researchers also explored a process of importance in lithography, or surface patterning, wherein they examined how an organic molecule comes off a surface. The process is crucial to the production of computer chips because it requires superimposing surface patterns multiple times with pinpoint accuracy. Specifically, they "reverse engineered" an organic molecule using only their computer model that was found to undergo the reverse reaction--i.e., detachment from the surface--more easily than the original butadiene used in the attachment studies. This finding suggests that the reaction chemistry at the semiconductor surface can be controlled by custom designing or tailoring molecules that exhibit specific desired properties in the reactions they undergo.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>