Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cornell researchers’ discovery opens door in fight against cancer and other diseases


Cornell University researchers have revealed a process that has stumped scientists for many years: exactly how an acid derived from vitamin A enters a cell’s nucleus, where it has strong anti-carcinogenic effects.

Discovery of this basic transport mechanism opens a new door for future research on related compounds. The finding has important implications for the fight against cancer and other diseases.

The research, which appears in a recent issue of the journal Molecular Cell (Vol. 18, No. 3), explains for the first time how the cancer-fighting vitamin A derivative retinoic acid (RA) gains entry into a cell’s nucleus.

When vitamin A enters a cell’s cytoplasm (the portion that lies between the outer membrane and the nucleus), it can be converted to RA, a member of a group of compounds that enter a cell’s nucleus and play a role in triggering transcription. This is a basic process for relaying genetic information and switching genes on and off. In this role, RA can inhibit tumor growth. In fact, past clinical trials have shown that RA can help treat leukemia, head, neck and breast cancer. RA and its synthetic derivatives may also be useful in treatment of diabetes, arteriosclerosis and emphysema. Unfortunately, conventional treatments using RA require high, toxic doses, and tumors can develop resistance to the treatment.

Noa Noy, a professor of nutritional sciences at Cornell, and Richard Sessler, the paper’s lead author and a graduate student in Noy’s lab, wanted to learn how RA is transported into the cell’s nucleus. The chemical structure of RA makes it hydrophobic, meaning it is barely soluble in water. But the path from the cell cytoplasm, where RA is made, to the nucleus requires passage through water, a difficult journey for a hydrophobic compound. For RA to rapidly enter a cell’s nucleus, it must catch a ride on a water-soluble protein called cellular retinoic acid-binding protein type II (CRABP-II). This protein was discovered over two decades ago, but until recently scientists had no idea what it did.

Much like a doorway that requires a pass code to enter, CRABP-II can only move into a cell’s nucleus if its amino acids are organized in a certain sequence, called a nuclear localization signal (NLS). However, CRABP-II does not have a recognizable NLS. Researchers have long wondered how proteins without an NLS enter a cell’s nucleus.

By comparing the 3-D structures of the CRABP-II protein before and after it comes in contact with RA, Noy and Sessler made a startling discovery: When exposed to RA, three amino acids on the CRABP-II molecule flip their positions, exposing positive charges. Combined with the way the molecule is folded, this area suddenly looks like a classical NLS.

"This discovery creates a precedent for many other proteins that don’t have an NLS, and it solves a mystery that has been in the literature for a long time," Noy says. "It explains a basic mechanism of how this protein, CRABP-II, gets into the nucleus, where it can act to suppress tumors."

CRABP-II is a member of a group of proteins called intracellular lipid binding proteins (ILBP), which don’t have a recognizable NLS. But now researchers have something new to look for -- folds in a molecule’s structure and amino acids that flip when exposed to a hormone or a drug. Noy currently is working with an ILBP that she has pinpointed as a pro-carcinogen -- it promotes cancer. Armed with new tools and knowledge, she hopes to figure out how to suppress the ability of this protein to move to the nucleus and promote cancer, perhaps by blocking the hormone that switches on its NLS.

In previous experiments with mice, Noy and her colleagues showed that by increasing CRABP-II levels within cells, tumor growth rates slow dramatically. The protein transfers RA rapidly and efficiently to the cell’s nucleus. In this way, tumor growth may be inhibited using naturally occurring levels of RA, as opposed to the toxic doses currently administered.

"If you can provide a bus to get retinoic acid into the nucleus more efficiently, then you enhance its ability to act as an anti-carcinogen," says Noy. "It’s a rapid transport advantage."

Her findings emphasize the importance of efforts in structural genomics, the study of the folding motifs in proteins, which allows researchers to compare 3-D structures of seemingly unrelated proteins. "Advances in structural genomics will allow you to predict what the protein does," Noy says.

The research was supported by the National Institutes of Health.

Press Relations | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>