Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell researchers’ discovery opens door in fight against cancer and other diseases

03.05.2005


Cornell University researchers have revealed a process that has stumped scientists for many years: exactly how an acid derived from vitamin A enters a cell’s nucleus, where it has strong anti-carcinogenic effects.



Discovery of this basic transport mechanism opens a new door for future research on related compounds. The finding has important implications for the fight against cancer and other diseases.

The research, which appears in a recent issue of the journal Molecular Cell (Vol. 18, No. 3), explains for the first time how the cancer-fighting vitamin A derivative retinoic acid (RA) gains entry into a cell’s nucleus.


When vitamin A enters a cell’s cytoplasm (the portion that lies between the outer membrane and the nucleus), it can be converted to RA, a member of a group of compounds that enter a cell’s nucleus and play a role in triggering transcription. This is a basic process for relaying genetic information and switching genes on and off. In this role, RA can inhibit tumor growth. In fact, past clinical trials have shown that RA can help treat leukemia, head, neck and breast cancer. RA and its synthetic derivatives may also be useful in treatment of diabetes, arteriosclerosis and emphysema. Unfortunately, conventional treatments using RA require high, toxic doses, and tumors can develop resistance to the treatment.

Noa Noy, a professor of nutritional sciences at Cornell, and Richard Sessler, the paper’s lead author and a graduate student in Noy’s lab, wanted to learn how RA is transported into the cell’s nucleus. The chemical structure of RA makes it hydrophobic, meaning it is barely soluble in water. But the path from the cell cytoplasm, where RA is made, to the nucleus requires passage through water, a difficult journey for a hydrophobic compound. For RA to rapidly enter a cell’s nucleus, it must catch a ride on a water-soluble protein called cellular retinoic acid-binding protein type II (CRABP-II). This protein was discovered over two decades ago, but until recently scientists had no idea what it did.

Much like a doorway that requires a pass code to enter, CRABP-II can only move into a cell’s nucleus if its amino acids are organized in a certain sequence, called a nuclear localization signal (NLS). However, CRABP-II does not have a recognizable NLS. Researchers have long wondered how proteins without an NLS enter a cell’s nucleus.

By comparing the 3-D structures of the CRABP-II protein before and after it comes in contact with RA, Noy and Sessler made a startling discovery: When exposed to RA, three amino acids on the CRABP-II molecule flip their positions, exposing positive charges. Combined with the way the molecule is folded, this area suddenly looks like a classical NLS.

"This discovery creates a precedent for many other proteins that don’t have an NLS, and it solves a mystery that has been in the literature for a long time," Noy says. "It explains a basic mechanism of how this protein, CRABP-II, gets into the nucleus, where it can act to suppress tumors."

CRABP-II is a member of a group of proteins called intracellular lipid binding proteins (ILBP), which don’t have a recognizable NLS. But now researchers have something new to look for -- folds in a molecule’s structure and amino acids that flip when exposed to a hormone or a drug. Noy currently is working with an ILBP that she has pinpointed as a pro-carcinogen -- it promotes cancer. Armed with new tools and knowledge, she hopes to figure out how to suppress the ability of this protein to move to the nucleus and promote cancer, perhaps by blocking the hormone that switches on its NLS.

In previous experiments with mice, Noy and her colleagues showed that by increasing CRABP-II levels within cells, tumor growth rates slow dramatically. The protein transfers RA rapidly and efficiently to the cell’s nucleus. In this way, tumor growth may be inhibited using naturally occurring levels of RA, as opposed to the toxic doses currently administered.

"If you can provide a bus to get retinoic acid into the nucleus more efficiently, then you enhance its ability to act as an anti-carcinogen," says Noy. "It’s a rapid transport advantage."

Her findings emphasize the importance of efforts in structural genomics, the study of the folding motifs in proteins, which allows researchers to compare 3-D structures of seemingly unrelated proteins. "Advances in structural genomics will allow you to predict what the protein does," Noy says.

The research was supported by the National Institutes of Health.

Press Relations | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>