Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Yale researchers identify molecule for detecting parasitic infection in humans


Researchers at Yale, in collaboration with NIH researchers, have identified a specific protein molecule that is used by the immune system for detection of parasitic infections, leading the way for development of future vaccines to combat these infections.

Published in the April 28 issue of Science Express, the study provides insight into understanding how infectious parasites interface with the immune system--a problem of great scientific and clinical importance.

Most infections are caused by bacterial or viral microorganisms that produce molecules quite different from those produced by humans and other eukaryotic organisms. When microorganisms infect humans, the atypical molecules are usually detected immediately by human proteins called Toll-like receptors (TLR) that alert the human immune system to fight the infection.

But parasites, like humans, are eukaryotic in origin and how the body detects them has been a mystery.

The common parasite Toxoplasma gondii (T. gondii) causing toxoplasmosis, has a complicated life cycle in which it is transmitted from mice to cats and then to humans. Previous research had shown that T. gondii is recognized by a TLR and that the recognition of this parasite is crucial for an appropriate immune response. However, it was unclear which of the 13 different TLRs present in mammals was responsible and which molecule of T. gondii was being recognized by the TLRs.

"In this study we found that the recognition of T. gondii by the innate immune system is mediated by a new member of the TLR family, TLR 11, that we discovered last year," said Sankar Ghosh, professor of immunobiology at Yale School of Medicine. "We further found that the specific recognition molecule was Toxoplasma profilin. The innate immune system has the capacity to recognize these proteins and the profilins are the triggers."

Ghosh said that although parasitic infections are less prominent in the United States than bacterial and viral infections, the global impact of parasitic infections on health is tremendous. "Insight obtained from these studies should lead to development of novel strategies to combat these infections," he said. "In particular, an understanding of the parasite components that trigger a host immune response may facilitate the development of better vaccines."

Karen N. Peart | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>