Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers identify molecule for detecting parasitic infection in humans

29.04.2005


Researchers at Yale, in collaboration with NIH researchers, have identified a specific protein molecule that is used by the immune system for detection of parasitic infections, leading the way for development of future vaccines to combat these infections.



Published in the April 28 issue of Science Express, the study provides insight into understanding how infectious parasites interface with the immune system--a problem of great scientific and clinical importance.

Most infections are caused by bacterial or viral microorganisms that produce molecules quite different from those produced by humans and other eukaryotic organisms. When microorganisms infect humans, the atypical molecules are usually detected immediately by human proteins called Toll-like receptors (TLR) that alert the human immune system to fight the infection.


But parasites, like humans, are eukaryotic in origin and how the body detects them has been a mystery.

The common parasite Toxoplasma gondii (T. gondii) causing toxoplasmosis, has a complicated life cycle in which it is transmitted from mice to cats and then to humans. Previous research had shown that T. gondii is recognized by a TLR and that the recognition of this parasite is crucial for an appropriate immune response. However, it was unclear which of the 13 different TLRs present in mammals was responsible and which molecule of T. gondii was being recognized by the TLRs.

"In this study we found that the recognition of T. gondii by the innate immune system is mediated by a new member of the TLR family, TLR 11, that we discovered last year," said Sankar Ghosh, professor of immunobiology at Yale School of Medicine. "We further found that the specific recognition molecule was Toxoplasma profilin. The innate immune system has the capacity to recognize these proteins and the profilins are the triggers."

Ghosh said that although parasitic infections are less prominent in the United States than bacterial and viral infections, the global impact of parasitic infections on health is tremendous. "Insight obtained from these studies should lead to development of novel strategies to combat these infections," he said. "In particular, an understanding of the parasite components that trigger a host immune response may facilitate the development of better vaccines."

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>