Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds moderate hypothermia a safe treatment for traumatic brain injury in kids

27.04.2005


Multi-center trial shows positive results for pediatric head injury cooling treatment



A first-of-its-kind multi-center trial has shown that cooling the body can have positive affects on children who suffered traumatic brain injury. The study’s lead investigator, Children’s Hospital of Pittsburgh neurosurgeon P. David Adelson, MD, and fellow researchers determined that induced moderate hypothermia initiated after severe traumatic brain injury (TBI) is a safe therapeutic intervention for children.

TBI initiates several metabolic processes that can exacerbate the injury. Adult research has produced evidence that hypothermia may limit some of these deleterious metabolic responses.


The trial, which is the only multi-center clinical trial involving children underway in the United States, was conducted to determine whether moderate hypothermia (32–33 degrees Celsius) begun in the early period after severe TBI and maintained for 48 hours is safe compared with normal body temperature (36.5–37.5 degrees Celsius). By inducing hypothermia in pediatric patients down to 32 degrees Celsius, doctors found that hypothermia tended to reduce mortality, lower the severity of intracranial hypertension during the cooling phase and has the potential to improve the functional outcome of young patients. Therefore, it was determined that hypothermia is likely a safe therapeutic intervention for children after severe TBI up to 24 hours after injury

Study results are published in the April issue of the journal, Neurosurgery. A total of 75 patients were involved in the trial, which was funded by the National Institutes of Health. "Traumatic brain injury causes more children’s deaths in this country than all other causes of death combined," said Dr. Adelson, who is the director of the Pediatric Neurotrauma Center at Children’s Hospital of Pittsburgh. "There is no one thing that can effectively treat all cases of traumatic brain injury, but our hope is that with the cooling from hypothermia, we may block or slow down the brain’s deleterious biochemical mechanisms following an injury and also be able to develop other more effective treatments."

Lowering body temperature can help control brain swelling and intracranial pressure, which can also exacerbate secondary injury if left unchecked. Induced hypothermia can be accomplished using several methods. Surface cooling methods such as cooling blankets placed under and on top of patients and ice packs placed in the groin and armpit areas are effective in decreasing temperature.

In addition to safety, mortality and complications during the treatment protocol and during hospitalization, the study also assessed functional and cognitive outcome in these children with severe traumatic brain injury. After severe TBI, 48 children less than 13 years of age admitted within six hours of injury were randomized by age to moderate hypothermia treatment in conjunction with standardized head injury management versus normal body temperature.

An additional 27 patients were entered into a parallel trial of those patients who were excluded because there was a delay in transfer of greater than six hours following injury but within 24 hours of admission, or unknown time when the injury occurred (i.e. child abuse) or were an adolescent (13–18 years old).

Assessments of safety included mortality, infection, coagulopathy (blood clotting), arrhythmias and hemorrhage as well as ability to maintain target temperature, mean intracranial pressure (ICP), and percent time of ICP less than 20 mm Hg during the cooling and subsequent rewarming phases. Additionally, assessments of neurocognitive outcomes were obtained at three and six months of follow-up. Researchers will conduct further studies to determine the effect of moderate hypothermia on functional outcome and intracranial hypertension.

Melanie Finnigan | EurekAlert!
Further information:
http://www.chp.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>