Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds moderate hypothermia a safe treatment for traumatic brain injury in kids

27.04.2005


Multi-center trial shows positive results for pediatric head injury cooling treatment



A first-of-its-kind multi-center trial has shown that cooling the body can have positive affects on children who suffered traumatic brain injury. The study’s lead investigator, Children’s Hospital of Pittsburgh neurosurgeon P. David Adelson, MD, and fellow researchers determined that induced moderate hypothermia initiated after severe traumatic brain injury (TBI) is a safe therapeutic intervention for children.

TBI initiates several metabolic processes that can exacerbate the injury. Adult research has produced evidence that hypothermia may limit some of these deleterious metabolic responses.


The trial, which is the only multi-center clinical trial involving children underway in the United States, was conducted to determine whether moderate hypothermia (32–33 degrees Celsius) begun in the early period after severe TBI and maintained for 48 hours is safe compared with normal body temperature (36.5–37.5 degrees Celsius). By inducing hypothermia in pediatric patients down to 32 degrees Celsius, doctors found that hypothermia tended to reduce mortality, lower the severity of intracranial hypertension during the cooling phase and has the potential to improve the functional outcome of young patients. Therefore, it was determined that hypothermia is likely a safe therapeutic intervention for children after severe TBI up to 24 hours after injury

Study results are published in the April issue of the journal, Neurosurgery. A total of 75 patients were involved in the trial, which was funded by the National Institutes of Health. "Traumatic brain injury causes more children’s deaths in this country than all other causes of death combined," said Dr. Adelson, who is the director of the Pediatric Neurotrauma Center at Children’s Hospital of Pittsburgh. "There is no one thing that can effectively treat all cases of traumatic brain injury, but our hope is that with the cooling from hypothermia, we may block or slow down the brain’s deleterious biochemical mechanisms following an injury and also be able to develop other more effective treatments."

Lowering body temperature can help control brain swelling and intracranial pressure, which can also exacerbate secondary injury if left unchecked. Induced hypothermia can be accomplished using several methods. Surface cooling methods such as cooling blankets placed under and on top of patients and ice packs placed in the groin and armpit areas are effective in decreasing temperature.

In addition to safety, mortality and complications during the treatment protocol and during hospitalization, the study also assessed functional and cognitive outcome in these children with severe traumatic brain injury. After severe TBI, 48 children less than 13 years of age admitted within six hours of injury were randomized by age to moderate hypothermia treatment in conjunction with standardized head injury management versus normal body temperature.

An additional 27 patients were entered into a parallel trial of those patients who were excluded because there was a delay in transfer of greater than six hours following injury but within 24 hours of admission, or unknown time when the injury occurred (i.e. child abuse) or were an adolescent (13–18 years old).

Assessments of safety included mortality, infection, coagulopathy (blood clotting), arrhythmias and hemorrhage as well as ability to maintain target temperature, mean intracranial pressure (ICP), and percent time of ICP less than 20 mm Hg during the cooling and subsequent rewarming phases. Additionally, assessments of neurocognitive outcomes were obtained at three and six months of follow-up. Researchers will conduct further studies to determine the effect of moderate hypothermia on functional outcome and intracranial hypertension.

Melanie Finnigan | EurekAlert!
Further information:
http://www.chp.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>