Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized microarrays may bring us one step closer

22.04.2005


A new study by 64 renowned scientists may bring us one step closer to personalized medical treatment--that is, medical treatment tailored to each person’s unique genetic make-up and medical condition. The study shows researchers how to get more consistent and reliable results when using a technology called microarrays or gene chips. Microarrays allow scientists to see how differences in gene expression are linked to specific diseases. Improving and standardizing microarray experiments will also allow earlier detection of diseases like cancer.



"The microarray is fairly new so, right now, researchers are using a lot of different methods and protocols in microarray experiments. That makes it hard for researchers to compare their results to results from other labs," said Kenneth Olden, Ph.D., Director of the National Institute of Environmental Health Sciences (NIEHS). "When scientists start using the same methods, equipment and reagents, data can be compared across the entire field of medicine and scientific advances will come more quickly."

The study, conducted by the Toxicogenomics Research Consortium, which is funded by the National Institute of Environmental Health Sciences, part of the National Institutes of Health, was initiated in 2001 to asses what causes variation in gene expression experiments within and between labs, as well as within and between microarray platforms. The TRC is a consortium of 7 research centers including: NIEHS Microarray Group of the National Center for Toxicogenomics, Duke University, Fred Hutchinson Cancer Research Center/University of Washington, Massachusetts Institute of Technology, Oregon Health and Sciences University, and University of North Carolina at Chapel Hill. Icoria Inc. was also a research partner. The paper appears in the May issue of Nature Methods.


The researchers systematically examined the processes involved in most microarray or gene expression studies, and found that using a standardized process led to more consistent results.

The researchers also found that using commercially manufactured microarrays produced the best results that can be more easily replicated. Using microarrays made in-house by each lab gave less consistent results.

"So far, gene expression data have been very useful in understanding diseases and biological processes," said Brenda Weis, Ph.D., an author on the study who works at NIEHS. "But if we standardize protocols the knowledge we gain from microarray studies can be used to improve clinical practice. For example, in the Netherlands, microarrays are being used to develop therapies for patients with specific subtypes of breast cancer."

Microarrays allow scientists to look at very subtle changes in many genes at one time. They provide a snapshot of what genes are expressed or active, in normal and diseased cells. When normal cells or tissues are compared to those known to be diseased, patterns of gene expression can emerge, allowing scientists to classify the severity of the disease and to identify the genes that can be targeted for therapy. This is how microarrays can potentially be used to develop personalized medical treatments.

The study analyzed results from seven separate laboratories using two different mouse RNA samples, including a liver RNA and a five-tissue pooled RNA sample, and 12 microarrays, which were either produced commercially or produced in-house by each lab.

"When we started the Consortium in 2001, we were being responsive to a stated need by researchers who use microarrays to study disease processes. Researchers want standards in order to minimize variation," said Dr. Weis. "If microarrays are to be used effectively in the clinic to diagnose patients and design patient-tailored therapies, they will need to be like any other clinical tests; they will need to be standardized."

"No individual lab could do something like this. A study of this magnitude requires a substantial commitment of time, money and expertise, and is well suited to be lead by the federal government," said Dr. Weis.

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>