Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized microarrays may bring us one step closer

22.04.2005


A new study by 64 renowned scientists may bring us one step closer to personalized medical treatment--that is, medical treatment tailored to each person’s unique genetic make-up and medical condition. The study shows researchers how to get more consistent and reliable results when using a technology called microarrays or gene chips. Microarrays allow scientists to see how differences in gene expression are linked to specific diseases. Improving and standardizing microarray experiments will also allow earlier detection of diseases like cancer.



"The microarray is fairly new so, right now, researchers are using a lot of different methods and protocols in microarray experiments. That makes it hard for researchers to compare their results to results from other labs," said Kenneth Olden, Ph.D., Director of the National Institute of Environmental Health Sciences (NIEHS). "When scientists start using the same methods, equipment and reagents, data can be compared across the entire field of medicine and scientific advances will come more quickly."

The study, conducted by the Toxicogenomics Research Consortium, which is funded by the National Institute of Environmental Health Sciences, part of the National Institutes of Health, was initiated in 2001 to asses what causes variation in gene expression experiments within and between labs, as well as within and between microarray platforms. The TRC is a consortium of 7 research centers including: NIEHS Microarray Group of the National Center for Toxicogenomics, Duke University, Fred Hutchinson Cancer Research Center/University of Washington, Massachusetts Institute of Technology, Oregon Health and Sciences University, and University of North Carolina at Chapel Hill. Icoria Inc. was also a research partner. The paper appears in the May issue of Nature Methods.


The researchers systematically examined the processes involved in most microarray or gene expression studies, and found that using a standardized process led to more consistent results.

The researchers also found that using commercially manufactured microarrays produced the best results that can be more easily replicated. Using microarrays made in-house by each lab gave less consistent results.

"So far, gene expression data have been very useful in understanding diseases and biological processes," said Brenda Weis, Ph.D., an author on the study who works at NIEHS. "But if we standardize protocols the knowledge we gain from microarray studies can be used to improve clinical practice. For example, in the Netherlands, microarrays are being used to develop therapies for patients with specific subtypes of breast cancer."

Microarrays allow scientists to look at very subtle changes in many genes at one time. They provide a snapshot of what genes are expressed or active, in normal and diseased cells. When normal cells or tissues are compared to those known to be diseased, patterns of gene expression can emerge, allowing scientists to classify the severity of the disease and to identify the genes that can be targeted for therapy. This is how microarrays can potentially be used to develop personalized medical treatments.

The study analyzed results from seven separate laboratories using two different mouse RNA samples, including a liver RNA and a five-tissue pooled RNA sample, and 12 microarrays, which were either produced commercially or produced in-house by each lab.

"When we started the Consortium in 2001, we were being responsive to a stated need by researchers who use microarrays to study disease processes. Researchers want standards in order to minimize variation," said Dr. Weis. "If microarrays are to be used effectively in the clinic to diagnose patients and design patient-tailored therapies, they will need to be like any other clinical tests; they will need to be standardized."

"No individual lab could do something like this. A study of this magnitude requires a substantial commitment of time, money and expertise, and is well suited to be lead by the federal government," said Dr. Weis.

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>