Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized microarrays may bring us one step closer

22.04.2005


A new study by 64 renowned scientists may bring us one step closer to personalized medical treatment--that is, medical treatment tailored to each person’s unique genetic make-up and medical condition. The study shows researchers how to get more consistent and reliable results when using a technology called microarrays or gene chips. Microarrays allow scientists to see how differences in gene expression are linked to specific diseases. Improving and standardizing microarray experiments will also allow earlier detection of diseases like cancer.



"The microarray is fairly new so, right now, researchers are using a lot of different methods and protocols in microarray experiments. That makes it hard for researchers to compare their results to results from other labs," said Kenneth Olden, Ph.D., Director of the National Institute of Environmental Health Sciences (NIEHS). "When scientists start using the same methods, equipment and reagents, data can be compared across the entire field of medicine and scientific advances will come more quickly."

The study, conducted by the Toxicogenomics Research Consortium, which is funded by the National Institute of Environmental Health Sciences, part of the National Institutes of Health, was initiated in 2001 to asses what causes variation in gene expression experiments within and between labs, as well as within and between microarray platforms. The TRC is a consortium of 7 research centers including: NIEHS Microarray Group of the National Center for Toxicogenomics, Duke University, Fred Hutchinson Cancer Research Center/University of Washington, Massachusetts Institute of Technology, Oregon Health and Sciences University, and University of North Carolina at Chapel Hill. Icoria Inc. was also a research partner. The paper appears in the May issue of Nature Methods.


The researchers systematically examined the processes involved in most microarray or gene expression studies, and found that using a standardized process led to more consistent results.

The researchers also found that using commercially manufactured microarrays produced the best results that can be more easily replicated. Using microarrays made in-house by each lab gave less consistent results.

"So far, gene expression data have been very useful in understanding diseases and biological processes," said Brenda Weis, Ph.D., an author on the study who works at NIEHS. "But if we standardize protocols the knowledge we gain from microarray studies can be used to improve clinical practice. For example, in the Netherlands, microarrays are being used to develop therapies for patients with specific subtypes of breast cancer."

Microarrays allow scientists to look at very subtle changes in many genes at one time. They provide a snapshot of what genes are expressed or active, in normal and diseased cells. When normal cells or tissues are compared to those known to be diseased, patterns of gene expression can emerge, allowing scientists to classify the severity of the disease and to identify the genes that can be targeted for therapy. This is how microarrays can potentially be used to develop personalized medical treatments.

The study analyzed results from seven separate laboratories using two different mouse RNA samples, including a liver RNA and a five-tissue pooled RNA sample, and 12 microarrays, which were either produced commercially or produced in-house by each lab.

"When we started the Consortium in 2001, we were being responsive to a stated need by researchers who use microarrays to study disease processes. Researchers want standards in order to minimize variation," said Dr. Weis. "If microarrays are to be used effectively in the clinic to diagnose patients and design patient-tailored therapies, they will need to be like any other clinical tests; they will need to be standardized."

"No individual lab could do something like this. A study of this magnitude requires a substantial commitment of time, money and expertise, and is well suited to be lead by the federal government," said Dr. Weis.

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>