Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals new technique for fingerprinting environmental samples

22.04.2005


Groundbreaking research led by the U.S. Department of Energy Joint Genome Institute (DOE JGI) demonstrates for the first time that the signatures of the genes alone in terrestrial and aquatic samples can accurately diagnose the health of the sampled environments. This study, published in the April 22nd edition of the journal Science positions large-scale genome sequencing to accelerate advances in environmental sciences akin to the contributions DNA sequencing has made to biomedical sciences.



"These DNA sequence fingerprints can be used to provide highly accurate assessments of the vitality of extremely diverse environments," said Dr. Raymond L. Orbach, Director of the DOE Office of Science, which supported the research. "These fingerprints can be used to reveal environments under stress as well as signal progress in remediating contaminated environments. This may well develop environmental ecology into a fully quantitative science."

Dubbed Environmental Genomic Tags, or EGTs, these indicators capture a DNA profile of a particular niche and reflect the presence and levels of nutrients, pollutants, and other environmental features.


The EGT approach employed in the study shares similarities with aspects of the Human Genome Project research. In the early 1990s, incomplete fragments of human genes called Expressed Sequence Tags (ESTs) were used as diagnostic fingerprints for human tissues to determine their unique features and disease status. These information-rich data allowed researchers to forge ahead with studying genes important in disease processes, long before the completion of the entire human genome.

"EGT fingerprints may be able to offer fundamental insights into the factors impacting on various environments," said DOE JGI Director, Eddy Rubin, who led the research team. "With EGTs we don’t actually need a complete genome’s worth of data to understand the functions required of the organisms living in a particular setting. Rather, the genes present and their abundances in the EGT data reflect the demands of the setting and, accordingly, can tell us about what’s happening in an environment without knowing the identities of the microbes living there."

The EGT fingerprints capture a DNA profile of a particular niche and reflect the presence and levels of nutrients, and pollutants, as well as features like the light and temperature. For example, genes involved in breaking down plant material are over represented in soil and absent in the sea water, while in sea water, genes involved in the passage of sodium, a major chemical component of salt water, were particularly abundant. As light is a major energy source for microbes living in surface water there was an abundance of genes involved in photosynthesis in samples collected from shallow water. These differences in the abundances of genes involved in particular functions provide DNA clues to features of the environments from where the samples were taken. Importantly the DNA clues were easy to find despite the vast numbers of different individual microbial species within the samples.

Rubin argues that the genes and their relative abundance as gleaned from EGTs reflect the intricate physical and biochemical details of a given environment without having to know the actual identities of the resident microbes. This finding is crucial for studies of microbes in the wild since the sheer number of different organisms present in nearly all environments makes it a daunting task to sequence the multitude of organisms one at a time. With the EGT approach, an abbreviated sequencing effort enables scientists to piece together the information and form a useful metabolic picture of an entire complex environment.

This study was done in collaboration with Diversa Corporation of San Diego, Calif. who provided the DNA from the different environments which included soil from a Minnesota farm and samples of several different whale skeletons collected from the Pacific and Artic ocean depths separated by thousands of miles. The DNA was then sequenced and analyzed by the JGI. While different environments present different metabolic pictures, this research, Rubin said, facilitates a holistic perspective on environmental systems, something that many scientists will welcome.

"Environmental systems are extremely complex, harboring numerous diverse species coexisting in a single locale," said Rubin. "By focusing on the information encoded in the DNA fragments sequenced, independent of the organisms from which they derived, we were able to get around the problem of species diversity."

Very little is known about the microbes since the vast majority of them, some 99 percent, are resistant to being grown under standard laboratory conditions. The EGT strategy’s particular utility is that it offers an easily accessible window into that important part of the biosphere with significant impact on the environment.

DOE JGI postdoctoral fellow Susannah Green Tringe was first author on the Science paper that, in addition to other DOE JGI scientists, included collaborators from Diversa Corporation, and the European Molecular Biology Laboratory, Heidelberg, Germany.

David E. Gilbert | EurekAlert!
Further information:
http://www.lbl.gov
http://www.jgi.doe.gov

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>