Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research pinpoints best treatment for stroke

20.04.2005


Results suggest CT perfusion improves outcomes



Interventional neuroradiologists at West Virginia University School of Medicine and Hospitals today presented the largest study to date on the utility of computed tomography (CT) perfusion imaging of the brain in determining and predicting stroke outcomes. Results will help better identify patients who are suitable candidates for treatment utilizing either clot busting medicines or clot retrieval devices. The research was presented to leading neurosurgeons at the 73rd annual meeting of the American Association of Neurological Surgeons.

The research, which examined 705 stroke patients, is significant because it allows doctors to customize stroke treatments based on the degree of brain death, instead of relying solely on how soon or late a patient comes to the hospital after having stroke symptoms. Stroke is the third leading cause of death among Americans. According to the American Stroke Association, 700,000 people each year experience a stroke. WVU researchers believe this research could change national protocols on how stroke patients are triaged and potentially extend treatment opportunity beyond the three-to-six hour window.


Under NIH stroke guidelines, hospitals typically administer tPA (a clot-busing drug) to patients within a three-hour window of stroke onset. After six hours, it’s generally considered too risky to administer even interarterial clot busting medicines, due to the risk of a potentially deadly hemorrhage.

But research presented by interventional neuroradiologists Jeff Carpenter, M.D., and Ansaar Rai, M.D., Assistant Professors at The Department of Neurological Surgery of West Virginia University School of Medicine, suggests more lives might be saved and debilitating side effects minimized if treatment of stroke patients was based on qualitative and quantitative imaging such as CT perfusion and CT angiography and not on generalized application of arbitrary time windows of three of six hours.

Those windows can exclude some patients who may benefit from treatment and include others who may suffer from serious complications of the treatment. Application of his research could increase the time window of treatment for stroke patients to greater than seven hours. This is significant because patients often don’t present to hospitals until after the three-hour window has closed because they don’t recognize the symptoms of stroke, can’t summons help quickly, or reside in rural areas. Additionally, those that do present in time can receive treatment that results in hemorrhage. A 2003 study published in Stroke which analyzed 15 published reports of tPA use in more than 2600 acute stroke patients found the intracerebral hemorrhage rate was 5.2 percent.

The WVU study shows that CT perfusion, which measures blood flow, is very accurate at determining which patients would best benefit from treatment and which should not receive clot-busting drugs. In the study, less than one percent of patients suffered a hemorrhage after receiving tPA, compared with the average of 5.2 percent of patients cited by the Stroke study.

CT perfusion allows radiologists to determine which portions of a stroke patient’s brain are dead, and which portions are dying but capable of being salvaged. Once a ratio of dead to dying brain is calculated, doctors can determine the best course of treatment. Only those patients whose brains are damaged but still alive will benefit from that treatment of acute revascularization of a blocked blood vessel.

To determine accuracy of CT perfusion, patients received both CT perfusion and an MRI. Results of the study presented shows that CT perfusion results correspond exceedingly well to MRI studies on several parameters including measuring cerebral blood volume, which indicates the severity of a blockage. About 60 percent of patients deemed candidates for intervention following CT perfusion were able to have their clots removed successfully by interarterial administration of tPA and the MERCI (corkscrew) procedure. In MERCI, the blood clot causing the stroke is removed by threading a corkscrew-like device through a catheter fed through the groin.

While MRIs are considered the gold standard for post stroke analysis, they are rarely performed and generally impractical because: they take 30 minutes to perform, require a stroke patient to be still to capture clean images (the patient may be moving or thrashing), require doctors to check for metal in the patients body (which may be impossible if no family members are present) and the MRI units themselves are often not adequately staffed or not located near the emergency room.

CT perfusion offers distinct advantages because most hospital emergency rooms use them frequently for other purposes, they take one to two minutes to scan (versus 30 minutes for MRI), and provide clear images even if a patient cannot lie perfectly still. Most hospitals need only to buy software (at a relatively inexpensive cost) to upgrade their systems and institute training programs.

In the coming months, Drs. Carpenter and Rai are expecting to publish their study in a nationally recognized journal.

Paul Moniz | EurekAlert!
Further information:
http://www.widmeyer.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>