Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children on school buses may face increased exposure to diesel pollution

19.04.2005


Diesel particle pollution inside urban school buses may be worse than levels found in the surrounding roadway air, according to a study by scientists at the University of California. The report appears in the April 15 issue of the American Chemical Society’s journal Environmental Science & Technology. ACS is the world’s largest scientific society.



It has generally been assumed that other vehicles on the road are the source of elevated particle levels. But a study of school buses in the Los Angeles area shows that much of the pollution inside a school bus comes from the bus itself, and children on board may be inhaling more diesel particles than previously believed.

Diesel particles are extremely small and can deposit deep in the lungs, whereas larger particles are filtered out by the nose, mouth and throat. A number of studies have linked diesel particles to adverse health effects. For example, a large assessment of air pollution in the Los Angeles area found that diesel particles are responsible for most of the cancer risk from outdoor air pollution.


Children are especially susceptible to air pollution because they have high inhalation rates and large lung surface area per body weight, as well as narrow airways and immature immune systems, the researchers say.

They analyzed results from a UCLA school bus experiment where the researchers took out the seats and essentially turned the buses into mobile chemistry labs, driving them along actual school bus routes in the greater Los Angeles area. Six buses were involved in the study: two older high-emitting diesel buses from 1975 and 1985; two diesel buses that are more representative of current fleets; one diesel bus outfitted with a particle trap; and one bus powered by compressed natural gas.

The researchers released a tracer gas into the engine exhaust and measured concentrations of that gas inside the buses. They then calculated the "intake fraction" — the fraction of the bus’s exhaust that is inhaled by students on that bus, assuming an average population of 40 people on each bus.

The levels turned out to be substantial for all six buses, but older buses and close-windowed buses were higher, according to the researchers. The average value for intake fraction across all bus runs was 27 grams inhaled per million grams emitted, with the highest value at around 100 per million.

"This may not sound like a lot," says Julian Marshall, a doctoral candidate in the Energy and Resources Group at UC Berkeley and lead author of the study. "But intake fraction values for vehicle emissions are 5-15 per million in a typical U.S. urban area, and about 50 per million in a large urban area like Los Angeles."

The fact that these values are comparable is "shocking," according to Marshall. "This means that for every ton of pollution emitted by a school bus, the cumulative mass of pollution inhaled by the 40 or so kids on that bus is comparable to — or in many cases larger than — the cumulative mass inhaled by all the other people in an urban area."

The California Air Resources Board, which sponsored the original study by UCLA, recommends minimizing commute times, using the cleanest buses for the longest commutes, accelerating the retirement of older buses, and decreasing bus caravanning and idling time to reduce children’s exposure to bus-related air pollutants.

"Based on our work, if a policymaker wants to reduce health effects from diesel for the population as a whole, then school buses are a good source to target," Marshall says.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with an interdisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>