Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Children on school buses may face increased exposure to diesel pollution


Diesel particle pollution inside urban school buses may be worse than levels found in the surrounding roadway air, according to a study by scientists at the University of California. The report appears in the April 15 issue of the American Chemical Society’s journal Environmental Science & Technology. ACS is the world’s largest scientific society.

It has generally been assumed that other vehicles on the road are the source of elevated particle levels. But a study of school buses in the Los Angeles area shows that much of the pollution inside a school bus comes from the bus itself, and children on board may be inhaling more diesel particles than previously believed.

Diesel particles are extremely small and can deposit deep in the lungs, whereas larger particles are filtered out by the nose, mouth and throat. A number of studies have linked diesel particles to adverse health effects. For example, a large assessment of air pollution in the Los Angeles area found that diesel particles are responsible for most of the cancer risk from outdoor air pollution.

Children are especially susceptible to air pollution because they have high inhalation rates and large lung surface area per body weight, as well as narrow airways and immature immune systems, the researchers say.

They analyzed results from a UCLA school bus experiment where the researchers took out the seats and essentially turned the buses into mobile chemistry labs, driving them along actual school bus routes in the greater Los Angeles area. Six buses were involved in the study: two older high-emitting diesel buses from 1975 and 1985; two diesel buses that are more representative of current fleets; one diesel bus outfitted with a particle trap; and one bus powered by compressed natural gas.

The researchers released a tracer gas into the engine exhaust and measured concentrations of that gas inside the buses. They then calculated the "intake fraction" — the fraction of the bus’s exhaust that is inhaled by students on that bus, assuming an average population of 40 people on each bus.

The levels turned out to be substantial for all six buses, but older buses and close-windowed buses were higher, according to the researchers. The average value for intake fraction across all bus runs was 27 grams inhaled per million grams emitted, with the highest value at around 100 per million.

"This may not sound like a lot," says Julian Marshall, a doctoral candidate in the Energy and Resources Group at UC Berkeley and lead author of the study. "But intake fraction values for vehicle emissions are 5-15 per million in a typical U.S. urban area, and about 50 per million in a large urban area like Los Angeles."

The fact that these values are comparable is "shocking," according to Marshall. "This means that for every ton of pollution emitted by a school bus, the cumulative mass of pollution inhaled by the 40 or so kids on that bus is comparable to — or in many cases larger than — the cumulative mass inhaled by all the other people in an urban area."

The California Air Resources Board, which sponsored the original study by UCLA, recommends minimizing commute times, using the cleanest buses for the longest commutes, accelerating the retirement of older buses, and decreasing bus caravanning and idling time to reduce children’s exposure to bus-related air pollutants.

"Based on our work, if a policymaker wants to reduce health effects from diesel for the population as a whole, then school buses are a good source to target," Marshall says.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with an interdisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>