Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children on school buses may face increased exposure to diesel pollution

19.04.2005


Diesel particle pollution inside urban school buses may be worse than levels found in the surrounding roadway air, according to a study by scientists at the University of California. The report appears in the April 15 issue of the American Chemical Society’s journal Environmental Science & Technology. ACS is the world’s largest scientific society.



It has generally been assumed that other vehicles on the road are the source of elevated particle levels. But a study of school buses in the Los Angeles area shows that much of the pollution inside a school bus comes from the bus itself, and children on board may be inhaling more diesel particles than previously believed.

Diesel particles are extremely small and can deposit deep in the lungs, whereas larger particles are filtered out by the nose, mouth and throat. A number of studies have linked diesel particles to adverse health effects. For example, a large assessment of air pollution in the Los Angeles area found that diesel particles are responsible for most of the cancer risk from outdoor air pollution.


Children are especially susceptible to air pollution because they have high inhalation rates and large lung surface area per body weight, as well as narrow airways and immature immune systems, the researchers say.

They analyzed results from a UCLA school bus experiment where the researchers took out the seats and essentially turned the buses into mobile chemistry labs, driving them along actual school bus routes in the greater Los Angeles area. Six buses were involved in the study: two older high-emitting diesel buses from 1975 and 1985; two diesel buses that are more representative of current fleets; one diesel bus outfitted with a particle trap; and one bus powered by compressed natural gas.

The researchers released a tracer gas into the engine exhaust and measured concentrations of that gas inside the buses. They then calculated the "intake fraction" — the fraction of the bus’s exhaust that is inhaled by students on that bus, assuming an average population of 40 people on each bus.

The levels turned out to be substantial for all six buses, but older buses and close-windowed buses were higher, according to the researchers. The average value for intake fraction across all bus runs was 27 grams inhaled per million grams emitted, with the highest value at around 100 per million.

"This may not sound like a lot," says Julian Marshall, a doctoral candidate in the Energy and Resources Group at UC Berkeley and lead author of the study. "But intake fraction values for vehicle emissions are 5-15 per million in a typical U.S. urban area, and about 50 per million in a large urban area like Los Angeles."

The fact that these values are comparable is "shocking," according to Marshall. "This means that for every ton of pollution emitted by a school bus, the cumulative mass of pollution inhaled by the 40 or so kids on that bus is comparable to — or in many cases larger than — the cumulative mass inhaled by all the other people in an urban area."

The California Air Resources Board, which sponsored the original study by UCLA, recommends minimizing commute times, using the cleanest buses for the longest commutes, accelerating the retirement of older buses, and decreasing bus caravanning and idling time to reduce children’s exposure to bus-related air pollutants.

"Based on our work, if a policymaker wants to reduce health effects from diesel for the population as a whole, then school buses are a good source to target," Marshall says.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with an interdisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>