Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals candidate targets for anti-retroviral therapeutics

18.04.2005


Research could lead to new drugs for HIV



The increased frequency of drug resistance in isolates of the AIDS virus, HIV, makes identification of new antiviral targets an urgent necessity. Host genes required to support the replication of HIV are a potential source of such novel targets, but relatively few appropriate target genes have been identified in animal cells thus far. A new study, conducted by Dr. Suzanne Sandmeyer and colleagues at the University of California, reports the discovery of over 100 host genes that affect the replication of a model retrovirus. Their results are reported in the May issue of Genome Research.

Many organisms harbor mobile genetic elements that are non-pathogenic molecular relatives of retroviruses. In budding yeast, these mobile elements (called Ty – or transposable yeast – elements) encode proteins that are homologs of retroviral proteins. The proteins encoded by Ty elements and the steps of the life cycle in yeast are similar to the proteins encoded by retroviruses and their life cycles in animal cells. Scientists believe that these simple elements in a single-celled organism are a good model for understanding how retroviruses such as HIV interact with their hosts. Yeast has previously been used as a model to help scientists understand how cancer cells replicate out of control.


The Sandmeyer laboratory, which has expertise in genetics and biochemistry, screened a collection of over 4457 mutant yeast strains representing most of the known genes in yeast. They then solicited the help of computer scientist Pierre Baldi, also at the University of California, to focus on gene functions likely to be particularly significant in the Ty3 lifecycle. Together, they developed an interactive program (GOnet) allowing them to search through large amounts of genetic and biochemical data to identify "clusters," or related groups of genes, that are most likely to affect key points in the Ty3 lifecycle. In total, they identified 130 genes that affect the replication of the retrovirus-like element Ty3.

Over half of the genes identified in this study have at least one clear relative or homolog in the human genome, thus providing a rich source of candidate retrovirus host genes. Sandmeyer and colleagues hope that this study, along with related studies of retrovirus-like elements in yeast, will ultimately lead to the development of a new generation of anti-retroviral therapeutics.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>