Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study explains process leading to many proteins from one gene

15.04.2005


New findings from researchers at UT Southwestern Medical Center help explain how the 20,000 to 25,000 genes in the human genome can make the hundreds of thousands of different proteins in our bodies.



Genes are segments of DNA that carry instructions for making proteins, which in turn carry out all of life’s functions. Through a natural process called "alternative splicing," information contained in genes is modified so that one gene is capable of making several different proteins.

"Alternative splicing is a key mechanism for achieving a diverse range of proteins, which contributes to the complexity of higher organisms," said Dr. Harold "Skip" Garner, professor of biochemistry and internal medicine at UT Southwestern and senior author of a new study aimed at understanding how and why alternative splicing occurs in humans.


The study is available online and will be published in the April 15 issue of the journal Bioinformatics.

Errors in alternative splicing can result in truncated or unstable proteins, some of which are responsible for human diseases such as prostate cancer and schizophrenia, Dr. Garner said. But errors also can result in proteins with new functions that help drive evolutionary changes.

"Alternative splicing appears to occur in 30 percent to 60 percent of human genes, so understanding the regulatory mechanisms guiding the process is fundamentally important to almost all biological issues," said Dr. Garner.

Alternative splicing can be likened to alternative versions of a favorite cookie recipe. If the original recipe (the gene) calls for raisins, walnuts and chocolate chips, and you copy the recipe but leave out the raisins, you’ll still get a cookie (protein) from your version, just a different cookie. Omit a necessary ingredient, such as flour, and you’ll have a mess (nonfunctioning or malfunctioning protein).

Similarly, the information in genes is not directly converted into proteins, but first is copied by special enzymes into RNA, or more specifically, pre-messenger RNA.

While the entire gene is copied into pre-mRNA, not all of that information will be used to make a protein. RNA segments called exons carry the protein-making information, while the segments between exons, called introns, are snipped out of pre-mRNA by special proteins. Exons also may be snipped out. Once snipping is complete, the remaining exons are spliced back together to form a fully functional, mature mRNA molecule, which goes on to create a protein.

Using computers, the UT Southwestern researchers scanned the human genome and found that the presence of certain DNA sequences called "tandem repeats" that lie between exons are highly correlated with the process of alternative splicing. They found a large number of tandem repeats on either side of exons destined to be spliced out of the pre-mRNA. The tandem repeat sequences also were complementary and could bind to each other.

"The complementary tandem repeat sequences on either side of an exon allow the DNA to loop back on itself, bind together, pinch off the loop containing a particular exon and then splice it out," Dr. Garner explained.

The chemical units that make up an organism’s DNA are abbreviated with the letters A, C, T and G. Strings of these letters form genes and spell out genetic instructions. Tandem repeats have DNA sequences with the same series of letters repeated many times, such as CACACACACACA.

Tandem repeats are "hot spots" where errors can easily be made during the copying process; for example, an extra CA could be added or deleted from the correct sequence. These errors could then result in a gene improperly splicing out an exon, thus making the wrong protein, Dr. Garner said. His research group has previously shown that these sequences are highly variable in cancer, and he said the new findings could go a long way toward understanding the genetic nature of how cancers start and progress.

"With this new understanding, we can now predict all genes that can re-arrange in this way and even predict which might splice improperly, resulting in disease," he said.

Former UT Southwestern research associate Dr. Yun Lian was a co-author of the study.

The research was funded by the National Cancer Institute, the National Heart, Lung and Blood Institute and the M.R. and Evelyn Hudson Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>