Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study explains process leading to many proteins from one gene

15.04.2005


New findings from researchers at UT Southwestern Medical Center help explain how the 20,000 to 25,000 genes in the human genome can make the hundreds of thousands of different proteins in our bodies.



Genes are segments of DNA that carry instructions for making proteins, which in turn carry out all of life’s functions. Through a natural process called "alternative splicing," information contained in genes is modified so that one gene is capable of making several different proteins.

"Alternative splicing is a key mechanism for achieving a diverse range of proteins, which contributes to the complexity of higher organisms," said Dr. Harold "Skip" Garner, professor of biochemistry and internal medicine at UT Southwestern and senior author of a new study aimed at understanding how and why alternative splicing occurs in humans.


The study is available online and will be published in the April 15 issue of the journal Bioinformatics.

Errors in alternative splicing can result in truncated or unstable proteins, some of which are responsible for human diseases such as prostate cancer and schizophrenia, Dr. Garner said. But errors also can result in proteins with new functions that help drive evolutionary changes.

"Alternative splicing appears to occur in 30 percent to 60 percent of human genes, so understanding the regulatory mechanisms guiding the process is fundamentally important to almost all biological issues," said Dr. Garner.

Alternative splicing can be likened to alternative versions of a favorite cookie recipe. If the original recipe (the gene) calls for raisins, walnuts and chocolate chips, and you copy the recipe but leave out the raisins, you’ll still get a cookie (protein) from your version, just a different cookie. Omit a necessary ingredient, such as flour, and you’ll have a mess (nonfunctioning or malfunctioning protein).

Similarly, the information in genes is not directly converted into proteins, but first is copied by special enzymes into RNA, or more specifically, pre-messenger RNA.

While the entire gene is copied into pre-mRNA, not all of that information will be used to make a protein. RNA segments called exons carry the protein-making information, while the segments between exons, called introns, are snipped out of pre-mRNA by special proteins. Exons also may be snipped out. Once snipping is complete, the remaining exons are spliced back together to form a fully functional, mature mRNA molecule, which goes on to create a protein.

Using computers, the UT Southwestern researchers scanned the human genome and found that the presence of certain DNA sequences called "tandem repeats" that lie between exons are highly correlated with the process of alternative splicing. They found a large number of tandem repeats on either side of exons destined to be spliced out of the pre-mRNA. The tandem repeat sequences also were complementary and could bind to each other.

"The complementary tandem repeat sequences on either side of an exon allow the DNA to loop back on itself, bind together, pinch off the loop containing a particular exon and then splice it out," Dr. Garner explained.

The chemical units that make up an organism’s DNA are abbreviated with the letters A, C, T and G. Strings of these letters form genes and spell out genetic instructions. Tandem repeats have DNA sequences with the same series of letters repeated many times, such as CACACACACACA.

Tandem repeats are "hot spots" where errors can easily be made during the copying process; for example, an extra CA could be added or deleted from the correct sequence. These errors could then result in a gene improperly splicing out an exon, thus making the wrong protein, Dr. Garner said. His research group has previously shown that these sequences are highly variable in cancer, and he said the new findings could go a long way toward understanding the genetic nature of how cancers start and progress.

"With this new understanding, we can now predict all genes that can re-arrange in this way and even predict which might splice improperly, resulting in disease," he said.

Former UT Southwestern research associate Dr. Yun Lian was a co-author of the study.

The research was funded by the National Cancer Institute, the National Heart, Lung and Blood Institute and the M.R. and Evelyn Hudson Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>