Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The impact of its environment on a quantum computer


Scientists have discovered how the performance of a quantum computer can be affected by its surrounding environment. The study, published in the latest issue of the journal Science, will help engineers to better understand how to integrate quantum components into a standard office computer – moving us one step closer to a future of quantum computing.

The collaborative team from the London Centre for Nanotechnology, University College London (UCL), the Paul Scherrer Institute/ETH in Switzerland and the Universities of Chicago and Copenhagen, have shown how its environment can radically alter the behaviour of a quantum computer, an effect which is not present for conventional computers of the type that exist now on our desktops.

Professor Gabriel Aeppli of UCL’s Dept of Physics and the Director of the London Centre for Nanotechnology says: "One of the most important questions in natural sciences is whether quantum mechanics is relevant to everyday experience. The famous puzzle of whether Schroedinger’s cat is dead or alive is the most graphic representation of this question, traditionally considered an academic point of no real practical import.

"However, the recent demand for secure communications and ultra-high speed computation has made the answer highly relevant to future technology where quantum ’qubits’ replace the classical binary bits 0 and 1 on which current digital electronics and communications rely.

"To engineer quantum computers it is necessary for the qubits to be stable in realistic settings, such as the integrated circuit packages in a typical office computer. Physicists refer to such settings as the ’environment’, or more picturesquely, the ’bath’, and the challenge is to control and minimize the interactions of the qubits with the bath.

"Quantum engineering will require careful attention to the ’baths’ in which the new devices will be immersed, in the same way that we worry about turbulent air conditions when we design aircraft." Baths by their very nature can be difficult to define and therefore the systematic study of interactions between qubits and baths is in its infancy. The new work shows how a well-specified bath affects the qubits in a crystal which behaves as a very primitive quantum computer. For example, the bath will change how the qubits will move in response to stimuli such as radio waves. The work also suggests that the effect can be controlled by radio waves themselves and by the temperature of the bath.

Jenny Gimpel | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>