Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostate cancer therapy - study suggests new molecular screening theory

15.04.2005


Smad7 protein levels may predict therapy response



Levels of the Smad7 protein may predict therapeutic response in patients with prostate cancer according to research published today by investigators at the Uppsala Branch of the Ludwig Institute for Cancer Research (LICR).

"Although the 2-ME compound is in early clinical trials, no-one has fully understood the molecular mechanisms of how it causes the death of cancer cells, but not normal cells," says Dr. Maréne Landström, the senior author of the paper published in the prestigious Journal of Biological Chemistry. "We found that 2-ME works through a protein called Smad7, and that artificially lowering the amount of Smad7 in prostate cancer cells reduced 2-ME’s ability to cause cell death. This finding suggests that the levels of Smad7, and other proteins in this molecular pathway, might predict the cell-killing ability of other cancer therapeutics and thus their effectiveness for treating individual patients."


Smad7 was originally discovered at the LICR Uppsala Branch in 1997, and the team reported, in the journal Nature, that the protein stopped cell growth by inhibiting a crucial oncogene known as TGF beta. As a result of the current study, Smad7 is now thought to play a crucial role connecting the mechanisms of cell growth, governed by TGF beta, and those of cell death, governed by another oncogene, p38 MAPK.

Dr. Carl-Henrik Heldin, Director of both the Uppsala Branch and LICR’s international ’TGF beta Program’ cautions that the research is at a preliminary stage and that more work is now needed to investigate whether the levels of Smad7 correlate with patients’ responses to different therapies. "If we can determine which patients are most likely to benefit from a particular therapeutic approach, we can reduce the possibility that a patient will undergo treatment that has side-effects but no benefit. More importantly, we may one day be able to effectively target each individual patient with the therapy-type best for him."

Sarah L. White, Ph.D. | EurekAlert!
Further information:
http://www.licr.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>