Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prostate cancer therapy - study suggests new molecular screening theory


Smad7 protein levels may predict therapy response

Levels of the Smad7 protein may predict therapeutic response in patients with prostate cancer according to research published today by investigators at the Uppsala Branch of the Ludwig Institute for Cancer Research (LICR).

"Although the 2-ME compound is in early clinical trials, no-one has fully understood the molecular mechanisms of how it causes the death of cancer cells, but not normal cells," says Dr. Maréne Landström, the senior author of the paper published in the prestigious Journal of Biological Chemistry. "We found that 2-ME works through a protein called Smad7, and that artificially lowering the amount of Smad7 in prostate cancer cells reduced 2-ME’s ability to cause cell death. This finding suggests that the levels of Smad7, and other proteins in this molecular pathway, might predict the cell-killing ability of other cancer therapeutics and thus their effectiveness for treating individual patients."

Smad7 was originally discovered at the LICR Uppsala Branch in 1997, and the team reported, in the journal Nature, that the protein stopped cell growth by inhibiting a crucial oncogene known as TGF beta. As a result of the current study, Smad7 is now thought to play a crucial role connecting the mechanisms of cell growth, governed by TGF beta, and those of cell death, governed by another oncogene, p38 MAPK.

Dr. Carl-Henrik Heldin, Director of both the Uppsala Branch and LICR’s international ’TGF beta Program’ cautions that the research is at a preliminary stage and that more work is now needed to investigate whether the levels of Smad7 correlate with patients’ responses to different therapies. "If we can determine which patients are most likely to benefit from a particular therapeutic approach, we can reduce the possibility that a patient will undergo treatment that has side-effects but no benefit. More importantly, we may one day be able to effectively target each individual patient with the therapy-type best for him."

Sarah L. White, Ph.D. | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>