Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostate cancer therapy - study suggests new molecular screening theory

15.04.2005


Smad7 protein levels may predict therapy response



Levels of the Smad7 protein may predict therapeutic response in patients with prostate cancer according to research published today by investigators at the Uppsala Branch of the Ludwig Institute for Cancer Research (LICR).

"Although the 2-ME compound is in early clinical trials, no-one has fully understood the molecular mechanisms of how it causes the death of cancer cells, but not normal cells," says Dr. Maréne Landström, the senior author of the paper published in the prestigious Journal of Biological Chemistry. "We found that 2-ME works through a protein called Smad7, and that artificially lowering the amount of Smad7 in prostate cancer cells reduced 2-ME’s ability to cause cell death. This finding suggests that the levels of Smad7, and other proteins in this molecular pathway, might predict the cell-killing ability of other cancer therapeutics and thus their effectiveness for treating individual patients."


Smad7 was originally discovered at the LICR Uppsala Branch in 1997, and the team reported, in the journal Nature, that the protein stopped cell growth by inhibiting a crucial oncogene known as TGF beta. As a result of the current study, Smad7 is now thought to play a crucial role connecting the mechanisms of cell growth, governed by TGF beta, and those of cell death, governed by another oncogene, p38 MAPK.

Dr. Carl-Henrik Heldin, Director of both the Uppsala Branch and LICR’s international ’TGF beta Program’ cautions that the research is at a preliminary stage and that more work is now needed to investigate whether the levels of Smad7 correlate with patients’ responses to different therapies. "If we can determine which patients are most likely to benefit from a particular therapeutic approach, we can reduce the possibility that a patient will undergo treatment that has side-effects but no benefit. More importantly, we may one day be able to effectively target each individual patient with the therapy-type best for him."

Sarah L. White, Ph.D. | EurekAlert!
Further information:
http://www.licr.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>