Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibril shape is the basis of prion strains and cross-species prion infection

08.04.2005


New research on prions, the infectious proteins behind "mad cow" disease and Creutzfeld-Jakob disease in humans, suggests that the ability of prions in one species to infect other species depends on the shape of the toxic threadlike fibers produced by the prion. Two studies on the topic appear in the 8 April issue of the journal Cell.

Although research suggests that prions from one species rarely infect other species, some scientists believe the species barrier was breached when a new version of Creutzfeld-Jakob disease appeared in humans after several recent epidemics of bovine spongiform encephalopathy or "mad cow" disease. Since then, barriers to the transmission of prion diseases between species "have emerged as a major public health issue," according to Eric Jones and Witold Surewicz of Case Western Reserve University.

Prion diseases are caused by misfolded variants of the normal prion protein, which aggregate into fibrous tangles called amyloid fibrils and cause fatal wasting of brain tissue. The abnormally folded protein itself appears to act as an infectious agent, transmitting disease without a DNA or RNA genome such as in a virus. Although disease prions seem to infect normal prions by binding to them and forcing them to take on the abnormal configuration, researchers remain uncertain about the exact molecular details of infection.



Earlier studies identified many "strains" of disease prions across mammalian and yeast species. Researchers thought these strains could be defined by differences in the underlying amino acid sequences of the prions. Under this scenario, disease transmission would be more likely between species with similar prion amino acid sequences.

But a few mysteries stood in the way: Some individuals harbored several different prion strains that caused different disease outcomes, even though all the prions shared the same amino acid sequence. In some cases, a single amino acid change in one species could completely change its ability to infect a previously "off-limits" species, Surewicz and colleagues found.

In a study published last year in the journal Molecular Cell, Surewuicz and colleagues also demonstrated that a "preseeding" process between animals with different prion amino acid sequences could overcome species barriers. For instance, mouse prion fibrils normally infect humans but not hamsters. But when mouse prions were brought into contact with hamster prion amyloid fibrils, a new strain of mouse fibrils emerged with the ability to infect hamsters but not humans. The new mouse strain had the same amino acid sequence as the original mouse strain but completely different infectious capabilities.

With the help of atomic-level microscopic observation of prions in humans, mice, and hamsters, Jones and Surewicz discovered that it is the specific shape of the amyloid fibrils, and not the amino acid sequences, that may allow prions from one species to infect another.

In a second Cell study, Jonathan Weissman and colleagues at the University of California, San Francisco came to the same conclusion in their experiments with yeast. They too discovered that the particular shape of a prion amyloid fibril was the determining factor in whether one species of yeast could infect another yeast species.

Just as in the case with the preseeded mice fibrils, a particular fibril shape in Saccharomyces cerevisiae yeast allowed prion transmission to Candida albicans yeast. The transmission event led to a new strain of Candida prion fibrils that could in turn infect Saccharomyces.

Although fibril shape appears to be the deciding infective factor, amino acid sequence is still important because it defines a set of possible preferred fibril shapes that prions can adopt, Weissman says. Species with similar amino acids sequences share an overlapping set of shapes, which helps explain why species with shared sequences have the ability to infect each other.

Surewicz says the next step in their research will be to examine fibril shape differences at much higher resolution. Their experiments also used a shortened version of the mammalian prion protein, so they hope to test the fibril factor in a full-length protein soon.

Jones and Surewicz also note that the new findings offer "the unsettling possibility" that repeated cross-species transmission events might eventually create prion fibril strains that can bridge the infection gap between previously separate animals like humans and elk and deer, which suffer from a prion disease called chronic wasting disease.

Surewicz stresses, however, prion infection between species is still rare. "Fortunately, transmission by eating is very ineffective. There have been hundreds of thousands of bovine spongiform encephalopathy cases, for example, and lots of people exposed to tainted beef products, but very few cases of variant Creutzfeld-Jakob." He says there "must be protective mechanisms working there, but we don’t know what they are."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>