Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Promiscuous’ area of brain could explain role of antidepressants

07.04.2005


A study at Baylor College of Medicine in Houston may lead to a better understanding of how antidepressants like Prozac work – and how to make them more effective.



According to results published in today’s issue of the journal Neuron, a study in mice proposes that dopamine and serotonin neurotransmitter systems in the brain occasionally get their signals crossed, causing delays in stabilizing mood. "This study provides a new site for drug discovery in one of the biggest market for drugs – those that treat symptoms of depression," said Dr. John Dani, professor of neuroscience at BCM and lead author of the study.

Dani’s study, funded by the National Institutes of Health, offers an alternative explanation for the delayed effect of most antidepressants. "Some scientists thought that you had to take an antidepressant for weeks because as serotonin is elevated, some of its receptors had to turn off and become desensitized rather than be stimulated," Dani said. "That didn’t make a lot of sense to us since desensitization is usually a rapid mechanism."


Serotonin and dopamine neurotransmitter systems, which factor heavily in regulating mood, emotional balance, and psychosis, are released and reabsorbed in the striatum, an area of the brain which affects motivation and reward-based learning. Dani’s findings indicate that these systems may be less selective and more "promiscuous" than previously believed. "There has been a fundamental principal in neuroscience that a neuron releases one neurotransmitter," said Dani. "We have come to realize that neurotransmitters aren’t the perfect 1-to-1signalers that we assumed – they’re a little promiscuous. That is, rather than transporting one neurotransmitter, these systems may transport other neurotransmitters as well."

A better understanding of how antidepressants work would come as welcome news to those who suffer from depressive disorders, a leading cause of disability worldwide. Over 14 million adults experience depression each year in the United States alone. "Instead of taking serotonin up as they normally would into serotonin neurons, it is taken up into the terminals for dopamine so that now when your neurons fire to send a dopamine signal, they’re actually also sending a little bit of a serotonin signal," Dani said. "This kind of interaction among neurotransmitter systems alters the timing of how these neurotransmitter systems act, and in that way, it certainly impacts how you process information."

Depression is commonly treated with selective serotonin reuptake inhibitors (SSRIs) like Prozac to elevate and prolong the presence of the neurotransmitter serotonin in the brain. By blocking the uptake of serotonin after its initial release, conventional antidepressants provide the brain more serotonin for a longer period of time. An alternative approach suggested by this study is to develop antidepressant treatments that help serotonin enter dopamine terminals.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>