Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Research on Multiple vs Single Births May Offer New Approaches for Infertility


The multiple “litter” births of mice, versus the normal singleton pregnancy of humans, is due to defective processing in mice of a common mammalian protein called bone morphogenetic protein 15 (BMP-15), according to new study by University of California, San Diego (UCSD) School of Medicine researchers.

Published online the week of April 4, 2005 in Proceedings of the National Academy of Sciences, and appearing in the journal’s April 12, 2005 print edition, the study provides one of the first insights into the physiological mechanisms responsible for multiple births and suggests a potential therapeutic target for infertility and contraception.

“Infertility is a major problem for many couples,” said the study’s senior author, Shunichi Shimasaki, Ph.D., UCSD professor of reproductive medicine. “Based on our findings, it is possible that therapeutic regimens targeting BMP-15 could offer exciting new opportunities for novel treatments for female infertility. On the other side of the coin, BMP-15 could also serve as a new target for non-steroidal contraceptives.”

Recently, scientists have found that BMP-15 produced by eggs developing in the ovary plays an important role in determining ovulation quota, which results in litter size in mammals. In laboratory studies with human and mouse models, the UCSD team found specific differences between mice and humans in the way BMP-15 is produced and secreted by cells.

While BMP-15 was found to be readily produced and normal in humans, its production in mice was degraded before it could become a mature protein. BMP-15 controls the number of follicles that become competent to ovulate, resulting in singleton or twin gestations in humans and sheep. In mice, however, the impaired BMP-15 caused early development of follicles, leading to an increase in egg production and ovulation.

“How humans restrict their pregnancies to single or twin births while many other animals have such large litters is a fundamental aspect of biology that has remained poorly understood,” Shimasaki said. “This research begins to provide some answers to this very basic question of biology.”

The study was funded by the National Institutes of Health (NIH) and the National Institute of Child and Human Development/NIH. The first author was Osamu Hashimoto, Ph.D., a former post doctoral fellow in the UCSD Department of Reproductive Medicine, and an additional author was another former post doctoral fellow, R. Kelly Moore, Ph.D., UCSD Department of Reproductive Medicine.

Sue Pondrom | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>