Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statement from the Golden Rice Humanitarian Board On Development of New Golden Rice Strain with Higher Levels of Beta-Carotene

29.03.2005


The Golden Rice Humanitarian Board welcomes the peer reviewed study published in the April issue of Nature Biotechnology detailing the development of a new variety of Golden Rice that contains approximately 23 times more beta-carotene or “pro-vitamin A” than the original Golden Rice variety.The human body converts beta-carotene to Vitamin A.

The Board encourages further research to determine how the new variety may play a part in the ongoing global effort to fight vitamin A deficiency in poor countries. Vitamin A deficiency is the leading cause of preventable blindness in children.

According to the World Health Organization, dietary vitamin A deficiency (VAD) causes some 250,000 to 500,000 children to go blind each year. More than half those who lose their sight die within a year. VAD compromises the immune systems of approximately 40 percent of children under five in the developing world, greatly increasing the risk of severe illnesses from common childhood infections. VAD is most severe in Southeast Asia and Africa.



While the large beta-carotene increase in Golden Rice is an exciting advance, it is important to keep in mind that even with elevated levels of vitamin A, Golden Rice is not by itself a solution to malnutrition in developing countries. Malnutrition is rooted in political, economic and cultural issues that cannot be magically resolved by a single agricultural technology. Golden Rice offers developing countries another choice in the broader campaign against malnutrition.

This new development is further evidence that Golden Rice could complement existing efforts that seek to end blindness and other diseases caused by vitamin A deficiency. These other efforts include fortifying basic foodstuff with vitamin A, distributing vitamin A supplements, and increasing consumption of other foods rich in vitamin A. Golden Rice is but one tool in a larger toolbox from which country health officials, farmers and consumers could choose in their efforts to fight vitamin A deficiency.

No new or previous varieties of Golden Rice should be introduced for large-scale planting until independent scientific evaluations and government regulatory reviews have been conducted in countries where it might be cultivated. .

The new development increases the amount of beta-carotene, a substance found naturally in orange and yellow fruits and vegetables, in the new rice variety by incorporating a gene that produces a safe, naturally occurring enzyme found in corn.

In Asia, the average person eats rice two or three times a day. Three of the world’s four most populous countries—China, India and Indonesia, which together have about 2.5 billion people—are considered “rice based societies.” Rice also has become a staple food in many African countries. Globally, rice grain is the world’s most important source of human food—feeding more than half of the world’s population. Rice is a good provider of calories and protein, but rice scientists have long recognized its micronutrient deficiencies. Milled white rice contains essentially no beta-carotene and unmilled brown rice contains a very small amount.

Public rice research institutions in the Philippines, Vietnam, India, Bangladesh, Chinaand Indonesia are in various stages of leading efforts to develop locally adapted Golden Rice varieties.*

Once locally developed varieties containing the Golden trait have been cleared at the national level for biosafety, they will be made available to subsistence farmers free of charge. The seed will become their property and they will also be able to use part of their harvest for the next sowing, free of cost. Golden Rice is compatible with farmers using traditional farming systems, without the need for additional agronomic inputs. Therefore, no new dependencies will be created. Furthermore, the Golden trait does not pose any known risk to the environment. The Humanitarian Board believes that social acceptance of Golden Rice is an important issue and must be addressed with and by partners in developing countries.

The Humanitarian Board is aware that as a genetically modified organism, Golden Rice will and should be given intensive scrutiny and that it also could be the subject of some controversy. Countries where Golden Rice could provide health benefits should be provided with the opportunity and information to pursue their own independent decision-making process and should not be pressured to either accept or reject Golden Rice.

Reaching the needy in target countries requires a highly professional and interdisciplinary team. For this purpose an honorary Humanitarian Board, composed of internationally recognised experts drawn from reputed institutions, is working closely with local groups in rice-based societies to help provide counsel on the continued discussions about and development of Golden Rice. The Humanitarian Board is chaired by Professor Ingo Potrykus, Professor emeritus, Swiss Federal Institute of Technology, and co-inventor of Golden Rice, together with Professor Peter Beyer, University of Freiburg.

The Humanitarian Board is further composed of: Dr. Gurdev Khush, who was the principal rice breeder at the International Rice Research Institute in the Philippines for 23 years and is now affiliated with University of California Davis; Prof. Robert Russell, Director, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston; Dr. Howarth Bouis, Director of the HarvestPlus Challenge Program under the auspices of the International Center for Tropical Agriculture (CIAT), Colombia, and the International Food Policy Research Institute (IFPRI), Washington DC; Dr. Gary Toenniessen, Director of Food Security, The Rockefeller Foundation; Dr Robert Bertram, Chief, Multilateral Programs Division, Center for Economic Growth and Agricultural Development, Global Bureau, US Agency for International Development; Dr. Katharina Jenny, Senior Advisor Natural Resources and Environment Division, Swiss Agency for Development and Cooperation; Dr. Adrian Dubock, Biotechnology Ventures and Humanitarian Technology Donations, Syngenta; Dr. Ren Wang, Deputy Director General Research, and Dr. William Padolina, Deputy Director General Partnerships, both International Rice Research Institute, the Philippines.

*The Golden Rice Network
The Golden Rice Network, coordinated by Dr. Gerard Barry (IRRI), will be the primary beneficiaries of the technnology. The institutions involved are breeding the Golden trait into local varieties for smallholder farmers.
Philippines
International Rice Research Institute (IRRI) (Management)
National Rice Research Institute (PhilRice)
Vietnam
Cuu Long Delta Rice Research Institute
India
Department of Biotechnology, India
Directorate of Rice Research
Indian Agricultural Research Institute
University of Delhi South Campus
Tamil Nadu Agricultural University
Agricultural University, Patnagar
University of Agricultural Sciences, Bangalore
Chinsurah Rice Research Station
Bangladesh
Bangladesh Rice Research Institute
China
Huazhong Agricultural University
Chinese Academy of Science
Yunnan Academy of Agricultural Sciences
Indonesia
Agency for Agricultural Research & Development, Jakarta

Dr. Jorge Mayer | alfa
Further information:
http://www.uni-freiburg.de

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>