Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statement from the Golden Rice Humanitarian Board On Development of New Golden Rice Strain with Higher Levels of Beta-Carotene

29.03.2005


The Golden Rice Humanitarian Board welcomes the peer reviewed study published in the April issue of Nature Biotechnology detailing the development of a new variety of Golden Rice that contains approximately 23 times more beta-carotene or “pro-vitamin A” than the original Golden Rice variety.The human body converts beta-carotene to Vitamin A.

The Board encourages further research to determine how the new variety may play a part in the ongoing global effort to fight vitamin A deficiency in poor countries. Vitamin A deficiency is the leading cause of preventable blindness in children.

According to the World Health Organization, dietary vitamin A deficiency (VAD) causes some 250,000 to 500,000 children to go blind each year. More than half those who lose their sight die within a year. VAD compromises the immune systems of approximately 40 percent of children under five in the developing world, greatly increasing the risk of severe illnesses from common childhood infections. VAD is most severe in Southeast Asia and Africa.



While the large beta-carotene increase in Golden Rice is an exciting advance, it is important to keep in mind that even with elevated levels of vitamin A, Golden Rice is not by itself a solution to malnutrition in developing countries. Malnutrition is rooted in political, economic and cultural issues that cannot be magically resolved by a single agricultural technology. Golden Rice offers developing countries another choice in the broader campaign against malnutrition.

This new development is further evidence that Golden Rice could complement existing efforts that seek to end blindness and other diseases caused by vitamin A deficiency. These other efforts include fortifying basic foodstuff with vitamin A, distributing vitamin A supplements, and increasing consumption of other foods rich in vitamin A. Golden Rice is but one tool in a larger toolbox from which country health officials, farmers and consumers could choose in their efforts to fight vitamin A deficiency.

No new or previous varieties of Golden Rice should be introduced for large-scale planting until independent scientific evaluations and government regulatory reviews have been conducted in countries where it might be cultivated. .

The new development increases the amount of beta-carotene, a substance found naturally in orange and yellow fruits and vegetables, in the new rice variety by incorporating a gene that produces a safe, naturally occurring enzyme found in corn.

In Asia, the average person eats rice two or three times a day. Three of the world’s four most populous countries—China, India and Indonesia, which together have about 2.5 billion people—are considered “rice based societies.” Rice also has become a staple food in many African countries. Globally, rice grain is the world’s most important source of human food—feeding more than half of the world’s population. Rice is a good provider of calories and protein, but rice scientists have long recognized its micronutrient deficiencies. Milled white rice contains essentially no beta-carotene and unmilled brown rice contains a very small amount.

Public rice research institutions in the Philippines, Vietnam, India, Bangladesh, Chinaand Indonesia are in various stages of leading efforts to develop locally adapted Golden Rice varieties.*

Once locally developed varieties containing the Golden trait have been cleared at the national level for biosafety, they will be made available to subsistence farmers free of charge. The seed will become their property and they will also be able to use part of their harvest for the next sowing, free of cost. Golden Rice is compatible with farmers using traditional farming systems, without the need for additional agronomic inputs. Therefore, no new dependencies will be created. Furthermore, the Golden trait does not pose any known risk to the environment. The Humanitarian Board believes that social acceptance of Golden Rice is an important issue and must be addressed with and by partners in developing countries.

The Humanitarian Board is aware that as a genetically modified organism, Golden Rice will and should be given intensive scrutiny and that it also could be the subject of some controversy. Countries where Golden Rice could provide health benefits should be provided with the opportunity and information to pursue their own independent decision-making process and should not be pressured to either accept or reject Golden Rice.

Reaching the needy in target countries requires a highly professional and interdisciplinary team. For this purpose an honorary Humanitarian Board, composed of internationally recognised experts drawn from reputed institutions, is working closely with local groups in rice-based societies to help provide counsel on the continued discussions about and development of Golden Rice. The Humanitarian Board is chaired by Professor Ingo Potrykus, Professor emeritus, Swiss Federal Institute of Technology, and co-inventor of Golden Rice, together with Professor Peter Beyer, University of Freiburg.

The Humanitarian Board is further composed of: Dr. Gurdev Khush, who was the principal rice breeder at the International Rice Research Institute in the Philippines for 23 years and is now affiliated with University of California Davis; Prof. Robert Russell, Director, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston; Dr. Howarth Bouis, Director of the HarvestPlus Challenge Program under the auspices of the International Center for Tropical Agriculture (CIAT), Colombia, and the International Food Policy Research Institute (IFPRI), Washington DC; Dr. Gary Toenniessen, Director of Food Security, The Rockefeller Foundation; Dr Robert Bertram, Chief, Multilateral Programs Division, Center for Economic Growth and Agricultural Development, Global Bureau, US Agency for International Development; Dr. Katharina Jenny, Senior Advisor Natural Resources and Environment Division, Swiss Agency for Development and Cooperation; Dr. Adrian Dubock, Biotechnology Ventures and Humanitarian Technology Donations, Syngenta; Dr. Ren Wang, Deputy Director General Research, and Dr. William Padolina, Deputy Director General Partnerships, both International Rice Research Institute, the Philippines.

*The Golden Rice Network
The Golden Rice Network, coordinated by Dr. Gerard Barry (IRRI), will be the primary beneficiaries of the technnology. The institutions involved are breeding the Golden trait into local varieties for smallholder farmers.
Philippines
International Rice Research Institute (IRRI) (Management)
National Rice Research Institute (PhilRice)
Vietnam
Cuu Long Delta Rice Research Institute
India
Department of Biotechnology, India
Directorate of Rice Research
Indian Agricultural Research Institute
University of Delhi South Campus
Tamil Nadu Agricultural University
Agricultural University, Patnagar
University of Agricultural Sciences, Bangalore
Chinsurah Rice Research Station
Bangladesh
Bangladesh Rice Research Institute
China
Huazhong Agricultural University
Chinese Academy of Science
Yunnan Academy of Agricultural Sciences
Indonesia
Agency for Agricultural Research & Development, Jakarta

Dr. Jorge Mayer | alfa
Further information:
http://www.uni-freiburg.de

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>