Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Studies Suggest Airborne SARS Transmission Is Possible

24.03.2005


Two new studies present evidence that the virus causing severe acute respiratory syndrome (SARS) may spread through the air, not just through direct contact with contaminated water droplets as previous research had shown.

SARS coronavirus was detected in the air in a patient’s room during the 2003 outbreak in Toronto, according to a new study published in The Journal of Infectious Diseases. Another study, from Hong Kong, shows patients in hospital bays near a SARS patient had a much higher infection rate than patients in distant bays, consistent with the possibility of airborne SARS transmission, according to an article in Clinical Infectious Diseases. Both articles are published in the journals’ May 1 issues, and are now available online.

The Toronto research was conducted by Timothy F. Booth, PhD and colleagues during the SARS outbreak there in March 2003. Their results mark the first experimental confirmation of the presence of the SARS virus in the air of an infected patient’s hospital room. The authors cautioned that their results do not document any cases of airborne transmission of the SARS virus from one person to another, only the dissemination of the virus from an infected patient to the air, via breathing or coughing.



During the outbreak in Toronto hospitals, health care workers became infected with the virus despite observance of strict infection control precautions. The investigators wondered whether environmental contamination of hospital air or surfaces could explain the ongoing risk of SARS coronavirus transmission to health care workers. To answer this question, they collected patient information and environmental samples from the SARS units of four Toronto hospitals. SARS coronavirus was detected in the air in one of the four rooms tested. The researchers also detected virus in four of 85 surface samples taken from frequently touched surfaces, highlighting the importance of strict adherence to infection control precautions to prevent SARS coronavirus transmission in the health care setting.
In the Hong Kong study, which focused on the 2003 SARS outbreak at the Prince of Wales Hospital, 41 percent of patients admitted to the ward in which the first SARS patient was staying became infected. Proximity to the bed of the first case seemed to be strongly linked with incidence of infection-two-thirds of patients in the same bay and half of patients in an adjacent bay were infected with SARS, while only 18 percent of patients in distant bays were infected. The Hong Kong researchers, led by Ignatius T.S. Yu, MBBS, MPH, of the Chinese University of Hong Kong, speculate that the increased risk of infection with closer proximity to the index SARS case suggests airborne transmission. Although they do not have "direct proof" of airborne transmission, according to Dr. Yu, "no other known routes of infectious diseases transmission could adequately explain the spread of the disease in the outbreak, and hence we feel that the evidence is quite strong."

An editorial accompanying the Toronto study, by Tommy Tong, MBBS, of Princess Margaret Hospital in Hong Kong, emphasized the scientific significance of discovering SARS coronavirus in the air in a patient’s room. "Although the possibility of airborne dissemination of SARS coronavirus has been controversial," said Dr. Tong, "this important work shows beyond doubt that SARS coronavirus aerosol generation can occur from a patient with SARS." The Hong Kong study provides additional, complementary evidence that the virus may be capable of spreading through the air.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>