Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery minerals formed in fireball from colliding asteroid that destroyed the dinosaurs

23.03.2005


Scientists at the American Museum of Natural History and the University of Chicago have explained how a globe-encircling residue formed in the aftermath of the asteroid impact that triggered the extinction of the dinosaurs. The study, which will be published in the April issue of the journal Geology, draws the most detailed picture yet of the complicated chemistry of the fireball produced in the impact.



The residue consists of sand-sized droplets of hot liquid that condensed from the vapor cloud produced by an impacting asteroid 65 million years ago. Scientists have proposed three different origins for these droplets, which scientists call "spherules." Some researchers have theorized that atmospheric friction melted the droplets off the asteroid as it approached Earth’s surface. Still others suggested that the droplets splashed out of the Chicxulub impact crater off the coast of Mexico’s Yucatan Peninsula following the asteroid’s collision with Earth.

But analyses conducted by Denton Ebel, Assistant Curator of Meteorites at the American Museum of Natural History, and Lawrence Grossman, Professor in Geophysical Sciences at the University of Chicago, provide new evidence for the third proposal. According to their research, the droplets must have condensed from the cooling vapor cloud that girdled the Earth following the impact. Ebel and Grossman base their conclusions on a study of spinel, a mineral rich in magnesium, iron and nickel contained within the droplets. "Their paper is an important advance in understanding how these impact spherules form," said Frank Kyte, adjunct associate professor of geochemistry at the University of California, Los Angeles. "It shows that the spinels can form within the impact plume, which some researchers argued was not possible."


When the asteroid struck approximately 65 million years ago, it rapidly released an enormous amount of energy, creating a fireball that rose far into the stratosphere. "This giant impact not only crushes the rock and melts the rock, but a lot of the rock vaporizes," Grossman said. "That vapor is very hot and expands outward from the point of impact, cooling and expanding as it goes. As it cools the vapor condenses as little droplets and rains out over the whole Earth."

This rain of molten droplets then settled to the ground, where water and time altered the glassy spherules into the clay layer that marks the boundary between the Cretaceous and Tertiary (now officially called the Paleogene) periods. This boundary marks the extinction of the dinosaurs and many other species.

The work that led to Ebel and Grossman’s Geology paper was triggered by a talk the latter attended at a scientific meeting approximately 10 years ago. At this talk, a scientist stated that spinels from the Cretaceous-Paleogene boundary layer could not have condensed from the impact vapor cloud because of their highly oxidized iron content. "I thought that was a strange argument," Grossman said. "About half the atoms of just about any rock you can find are oxygen," he said, providing an avenue for extensive oxidation.

Grossman’s laboratory, where Ebel worked at the time, specializes in analyzing meteorites that have accumulated minerals condensed from the gas cloud that formed the sun 4.5 billion years ago. Together they decided to apply their experience in performing computer simulations of the condensation of minerals from the gas cloud that formed the solar system to the problem of the Cretaceous-Paleogene spinels. UCLA’s Kyte, who himself favored a fireball origin for the spinels, has measured the chemical composition of hundreds of spinel samples from around the world.

Ebel and Grossman built on on Kyte’s work and on previous calculations done by Jay Melosh at the University of Arizona and Elisabetta Pierazzo of the Planetary Science Institute in Tucson, Ariz., showing how the asteroid’s angle of impact would have affected the chemical composition of the fireball. Vertical impacts contribute more of the asteroid and deeper rocks to the vapor, while impacts at lower angles vaporize shallower rocks at the impact site. Ebel and Grossman also drew upon the work of the University of Chicago’s Mark Ghiorso and the University of Washington’s Richard Sack, who have developed computer simulations that describe how minerals change under high temperatures.

The resulting computer simulations developed by Ebel and Grossman show how rock vaporized in the impact would condense as the fireball cooled from temperatures that reached tens of thousands of degrees. The simulations paint a picture of global skies filled with a bizarre rain of a calcium-rich, silicate liquid, reflecting the chemical content of the rocks around the Chicxulub impact crater.

Their calculations told them what the composition of the spinels should be, based on the composition of both the asteroid and the bedrock at the impact site in Mexico. The results closely matched the composition of spinels found at the Cretaceous-Paleogene boundary around the world that UCLA’s Kyte and his associates have measured.

Scientists had already known that the spinels found at the boundary layer in the Atlantic Ocean distinctly differed in composition from those found in the Pacific Ocean. "The spinels that are found at the Cretaceous-Paleogene boundary in the Atlantic formed at a hotter, earlier stage than the ones in the Pacific, which formed at a later, cooler stage in this big cloud of material that circled the Earth," Ebel said. The event would have dwarfed the enormous volcanic eruptions of Krakatoa and Mount St. Helens, Ebel said. "These kinds of things are just very difficult to imagine," he said.

The results in this paper strengthen the link between the unique Chicxulub impact and the stratigraphic boundary marking the mass extinction 65 million years ago that ended the Age of Dinosaurs. The topic will be explored further in a new groundbreaking exhibition, "Dinosaurs: Ancient Fossils, New Discoveries," set to open at the American Museum of Natural History on May 14. After it closes in the New York, the exhibition will travel to the Houston Museum of Natural Science (March 3-July 30, 2006); the California Academy of Sciences, San Francisco (Sept. 15, 2006-Feb. 4, 2007); The Field Museum, Chicago (March 30-Sept. 3, 2007); and the North Carolina State Museum of Natural Sciences, Raleigh (Oct. 26, 2007-July 5, 2008).

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu
http://www.amnh.org
http://www.geosociety.org

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>