Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determining the fate of cells in the human body

16.03.2005


A study in the April issue (currently available online) of Nature Genetics establishes a model that may take scientists closer to understanding how cells in the human body determine their own fate.



Researchers, led by Anthony Firulli, Ph.D., associate professor of pediatrics and of medical and molecular genetics at the Indiana University School of Medicine, investigated the interaction of proteins responsible for Saethre-Chotzen Syndrome, a rare genetic disorder associated with limb abnormalities including webbed fingers and other developmental defects.

In the study, Dr. Firulli and colleagues studied how two proteins, Twist1 and Hand2, which are antagonists, couple to determine the number of digits on a hand, paw or wing, and whether these digits are webbed or not. In addition to limb abnormalities, these proteins are associated with cardiac and placental tissue defects. Twist1 mutations are encountered at high frequency in patients with Saethre-Chotzen Syndrome.


"By studying a disease in which things go wrong at the cellular level, we gain insight into how to correct these errors," said Dr. Firulli, who also is a molecular biologist at the medical school’s Herman B Wells Center for Pediatric Research.

"From a pediatrics perspective -- there are many congenital defects - holes in the heart, cleft pallet, webbed hands -- which are outcomes of inappropriate molecular programs due to miscommunication at the cellular level. If we can understand what is going wrong, we may be able to correct these problems before birth," said Dr. Firulli.

Co-authors of the study are IU School of Medicine investigators Beth A. Firulli, Dayana Krawchuk, Victoria E. Centonze, Neil Vargesson, David M. Virshup, Simon J. Conway, Peter Cserjesi and Columbia University’s Ed Laufer.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>