Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determining the fate of cells in the human body

16.03.2005


A study in the April issue (currently available online) of Nature Genetics establishes a model that may take scientists closer to understanding how cells in the human body determine their own fate.



Researchers, led by Anthony Firulli, Ph.D., associate professor of pediatrics and of medical and molecular genetics at the Indiana University School of Medicine, investigated the interaction of proteins responsible for Saethre-Chotzen Syndrome, a rare genetic disorder associated with limb abnormalities including webbed fingers and other developmental defects.

In the study, Dr. Firulli and colleagues studied how two proteins, Twist1 and Hand2, which are antagonists, couple to determine the number of digits on a hand, paw or wing, and whether these digits are webbed or not. In addition to limb abnormalities, these proteins are associated with cardiac and placental tissue defects. Twist1 mutations are encountered at high frequency in patients with Saethre-Chotzen Syndrome.


"By studying a disease in which things go wrong at the cellular level, we gain insight into how to correct these errors," said Dr. Firulli, who also is a molecular biologist at the medical school’s Herman B Wells Center for Pediatric Research.

"From a pediatrics perspective -- there are many congenital defects - holes in the heart, cleft pallet, webbed hands -- which are outcomes of inappropriate molecular programs due to miscommunication at the cellular level. If we can understand what is going wrong, we may be able to correct these problems before birth," said Dr. Firulli.

Co-authors of the study are IU School of Medicine investigators Beth A. Firulli, Dayana Krawchuk, Victoria E. Centonze, Neil Vargesson, David M. Virshup, Simon J. Conway, Peter Cserjesi and Columbia University’s Ed Laufer.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>