Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using molecular technique, researcher identify hospital pool bacterial pathogen


’Life on the bubble’

A team of researchers, led by an environmental engineer at Washington University in St. Louis, has applied a molecular approach to identify the biological particles in aerosol responsible for making employees of a Colorado hospital therapeutic pool ill. They found: when the bubble bursts, the bacteria disperse, and lifeguards get pneumonia-like symptoms.

Lars Angenent, Ph.D., Washington University assistant professor of chemical engineering, and collaborators from San Diego State University and the University of Colorado, took what is known as a molecular survey of a common gene found in all life forms, 16 S ribosomal RNA (rRNA) gene, by cloning the different forms, sequencing them, and making evolutionary-distance trees, or phylogenetic trees. They then were able to match the genetic sequence of the bacterium Mycobacterium avium to the same bacterium found in the lungs of nine lifeguards who had become ill with hypersensitivity pneumonitis, a lung condition that mimics pneumonia symptoms.

The therapeutic pool was unlike regular swimming pools – but similar to hot tubs – in that the water temperature is about 92-94 degrees F. The pool water was treated with hydrogen peroxide, rather than chlorine, as a disinfectant. Patients who take hydrotherapy can be in the pool for up to four hours and the skin is sensitive to chlorine when exposed to it that long.

Lifeguards became ill because they were exposed to the bacteria in aerosols eight hours daily, five days a week. No patients became ill at the hospital, which must remain anonymous. "The presence of Mycobacterium avium would be a concern for the very young, or old or immunocompromised," Angenent said. "This isn’t a concern for a regular swimming pool, so there shouldn’t be any reason to panic."

Angenent said that typically bioaerosol researchers examining a problem like this would sample the air, capture the cells and grow them on an agar plate and count colonies of species, but this approach misses too many airborne bacteria, which are difficult to grow in a laboratory environment. The approach he and his collaborators took enabled them to survey greater than 1,300 rRNA genes from the different bacteria and fungi found in the air and pool water, giving them a total of 628 unique sequences, the most common being Mycobacterium avium, which was found in the ill people’s lungs."Our results show that molecular surveys are much better tools to gain knowledge of pathogens in the environment compared with conventional approaches," Angenent said. "If you use conventional tools, you might think there is no problem when there really is one."

The study was published in the March 14, 2005 issue of the Proceedings of the National Academy of Sciences.

The preferred site for these bacteria in the watery environment is a water bubble because the species is hydrophobic. They prefer to cluster together near the air and avoid the water. The pool had many bubbles in it because of the addition of hydrogen peroxide.

Whenever the bubble bursts, bacteria can become airborne. Mycobacterium avium is a gram-positive bacterium, known to be resistant to disinfection in large part because of a strong, waxy cell wall. In this particular hospital environment, the bacteria had even more freedom to grow because the hydrogen peroxide killed off nearly all its competitors.

"We did an exhaustive survey of everything we could find in the water and air, both at the pool, and outside the pool environment," Angenent said. ’We wanted to be sure the troublesome aerosol came from the pool and not from outside. We did find this mycobacterium at incredibly high levels in air, but we also found fungi spores and plant materials."

While no immunocompromised patients using the hospital pool became ill, there are cases in the literature of the immunocompromised becoming ill from Mycobacterium avium, Angenent said. "The pool was closed down for a short while, then re-opened," he said. "There were no reported cases of anyone else becoming ill from exposure, and the pool would have been safe for healthy people, as long as they were not in the environment for long stretches of time."

Angenent said he has results from a related study that shows air filters he and his coworkers emplaced by the same pool captured and removed a large percentage of bacteria from air. The pool has now reopened and no new cases of illness have been seen.

Tony Fitzpatrick | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>