Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Women lag behind men in academic leadership positions worldwide

14.03.2005


Analysis finds marked differences among countries indicating the importance of cultural and political factors



In most countries around the world, men significantly outnumber women in academic leadership positions. A group of researchers recently set out to explain this disparity, as well as to examine whether this difference reflects the female to male ratio among physicians or whether it reflects country-specific factors. Their findings, published in the March 2005 issue of Arthritis & Rheumatism address these questions in a study of the medical specialty of rheumatology from a historical, social and cultural perspective in different parts of the world.

Led by Ingrid E. Lundberg of the Karolinska University Hospital and the Karolinska Institutet in Sweden, an international group of women physicians analyzed gender trends among medical students, physicians and professors in Europe, North America, Latin America, Japan, and Turkey. Their data indicate marked differences among countries in the number of women faculty suggesting that national or cultural factors can affect the entry of women into top positions in the field. The percentage of women in faculty position ranged by almost ten-fold when comparing countries, with Turkey, Brazil and Mexico showing the highest number of women faculty among the countries surveyed.


In Sweden, which exemplifies trends seen in many other European countries, the researchers found that, while almost half (46%) of rheumatology specialists were female as of January 2003, women constitute only 16% of full professors in general and 22% of rheumatology professors. In the US, they found that, although the number of female faculty members has increased since the 1970s, it has not increased as rapidly as the student body: 49% of medical school applicants for the 2002-2003 academic year were female, contrasted with 13% of full professors for basic and clinical sciences in 2002. Although a gap was not as apparent in rheumatology, where a sampling of 33 of the largest rheumatology programs in the U.S. found that 25% of faculty members are women, a disparity nevertheless exists. Japan demonstrates a larger difference in gender inequality. In this country, only 14.4% of all physicians are female while 4.1% of faculty positions in medical school are held by women.

There are, however, some notable exceptions to male predominance in academic positions when compared to their percentages in medicine, especially rheumatology. In Mexico, 36% of the members of the Mexican College of Rheumatology are female, while 34% of academic rheumatologists (from a total of 10 rheumatology centers) are women. Brazil shows a similar trend, with 43.4% rheumatologists who are female compared with 41.3% female rheumatology university faculty members. Turkey showed the highest representation of females in academic positions, with 40% female rheumatologists and 43% women as full professors in rheumatology at the 8 big Turkish universities.

The authors note that, while in most countries in Europe, Latin and North America, the number of women and men entering medical school has been almost equal for decades, it appears that the percentage of female faculty has not changed much in the last 20 years, despite the increasing number of women among physicians. While the absence of women in some specialties might be explained by their low numbers in the field, this is not true of rheumatology. Other factors, such as an emphasis on family versus career may partly, but not entirely, explain the disparity.

In Turkey, where women are much better represented among faculty, the authors speculate that this is due to their high status in society, which stems from efforts by the Turkish government in the 1920s to involve women in professional life, including policies to support education for women. "In fact," the authors state, "the Turkish case may be a good example of how political will and affirmative action can result in significant change."

In posing the question of why changes have occurred so slowly, particularly in North America and Europe, the authors suggest that there may still remain subtle informal barriers within the social system of academic science, and that cultural norms and gender role expectations appear to limit women’s full participation in academia in many countries. "Work from top academic institutions in the US has shown that unless clear steps are taken to improve recruitment and retention of women in academics, no significant changes in gender distribution in medical school faculty are expected throughout the entire twenty-first century," the authors state.

These steps might include increasing gender sensitivity, such as including more female speakers at scientific conferences, establishing affirmative action policies to promote women, and supplying women with mentoring opportunities and information necessary for career advancement. The authors conclude that: "low participation of women in different branches of science, including medicine, poses problems not only for an egalitarian society, but also for the future of science. Faculty diversity will facilitate creativity in academic research and scientific discoveries, and thus the medical community will be able to respond to a wider array of needs and demands."

Amy Molnar | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/arthritis
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>